Egyptian Journal of Botany http://ejbo.journals.ekb.eg/ ## Molecular Techniques to Ascertain the Genetic Strategies in Some Malvaceae s.l. Species Ghada E. El-Badan^{(1)#}, Nasser H. Abbas⁽²⁾, Wafaa K. Taia⁽¹⁾, Ahmed M. Hassan⁽¹⁾, Laila M. El-Sadek⁽¹⁾ (1) Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt; (2) Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat City, Egypt. > AMILY Malvaceae has been traditionally subjected to several taxonomic approaches regarding their taxon relationships and divisions. With the rapid advancement of PCRbased methods and DNA sequence information, taxonomists now have the opportunity to shift from traditional systems of classification to more recent systems. Molecular studies of Malvaceous taxa have provided new opinions about the grouping and phylogeny of these taxa. This work involved molecular analyses of twenty-three Malvaceae species. Three molecular techniques were used, namely, inter simple sequence repeat (ISSR), sequence-related amplified polymorphism (SRAP), and internal transcribed spacer (ITS), to investigate the relationships between the studied taxa. Phylogenetic relationships were constructed using Molecular Evolutionary Genetics Analysis and Phylogenetic Analysis Using Parsimony (MEGA and PAUP) software. The results of this investigation revealed 301 molecular characteristics (78 ISSR and 223 SRAP bands) between the taxa. These data support the taxonomic view of the Malvaceae s.l. subfamilies in the Angiosperm Phylogeny Group system of plant classification (APG systems). **Keywords:** Classification, ISSR, ITS, Malvaceae s.l., Phylogeny, SRAP. ### Introduction Malvaceae s.l. originated from the Latin word mallow. This name was first used by Pliny the Elder (Simpson, 2010). It is a worldwide, diverse, large, and economically important family with approximately 246 genera and 4225 species (Kew Science, 2021). The diversification centers are in tropical and temperate areas of both hemispheres (Cvetković et al., 2021). In Egypt, this family includes 10 genera and 32 species (Taeckholm, 1974; Boulos, 1995, 2009). The native range of this species is the Nile region, the Oases region, the Mediterranean coast, all deserts of Egypt, the Red Sea coast, Gebel Elba and the entire Sinai Peninsula (Boulos, 2009). The circumscription of the Malvaceae s.l. is controversial and faces many taxonomic suggestions. Previous studies (Cronquist, 1988; Thorne, 1992; Takhtajan, 1997; Kubitzki, 2003; Judd et al., 2008) considered the four families Bombacaceae, Sterculiaceae, Tiliaceae and Malvaceae as the "core Malvales". These four families were found to be closely related since the time of Linnaeus (1753) and are still affirmed by morphological, anatomical, chemical, and molecular studies (Chase et al., 1993; Judd & Manchester, 1997; Alverson et al., 1998; Bayer et al., 1999; Nyffeler et al., 2005; Péchon & Gigord, 2014). The vast development of PCRbased techniques and DNA sequence information has allowed taxonomists to break away from the classical systems of classification and given birth to the APG systems (Angiosperm Phylogeny Group system, I, II, III & IV, 1998-2016). A previous study treated both Bombacoideae #Corresponding author email: ghada.elbadan@alexu.edu.eg ORCID ID: 0000-0003-1164-9158 Received 22/12/2023; Accepted 19/02/2024 DOI: 10.21608/ejbo.2024.257350.2624 Edited by: Prof. Dr. Reda Gaafar, Faculty of Science, Tanta University, 31527 Tanta, Egypt. ©2024 National Information and Documentation Center (NIDOC) Mobile 00201094491120 and Malvoideae as separate families rather than combined as subfamilies under Malvatheca. Additionally, these findings supported the identification of Sterculiaceae and Tiliaceae and pointed to the great difference in opinion given that Tiliaceae and Sterculiaceae are distinct families. Furthermore, these findings suggested that Dombeyaceae should be treated at the family level. In addition, *Abutilon* spp. with *Sida* spp. were placed in one tribe (Abutilae) (Shamso & Khattab, 2016). In the present study, the position of the taxa within Malvaceae *s.l.* was unclear, and the grouping lacked a well-resolved framework using morphological characteristics only. Thus, Weising et al. (2006) recommended the use of specific molecular parameters for clear-cut Malvaceae *s.l.* to detect variability among closely related species. Therefore, this study aimed to assess the validity of the APG classification systems for Malvaceae *s.l.* through the use of different molecular markers; Inter Simple Sequence Repeat (ISSR), Sequence-Related Amplified Polymorphism (SRAP), and Internal Transcribed Spacer (ITS). This is done to evaluate the phylogenetic relationships among the studied species and obtain a more detailed phylogenetic classification. #### **Materials and Methods** Sample collections A total of 23 species were used in this study as representative genera of Malvaceae in Egypt. Nineteen fresh specimens were collected from the Shehab Mazhar Botanical Garden in Baragil, Giza, Egypt, as well as from the botanical gardens of the Faculty of Science and Agriculture, Alexandria University. The remaining 4 dry specimens were obtained from the herbaria of Alexandria University, Tanta University, and Loutfy Boulos. Voucher specimens of the fresh samples were deposited in the Alex Herbarium, Alexandria, Egypt. The locations of the collected specimens and their related information are presented in Table 1. Unfortunately, Egyptian Pavonia arabica was not represented in the Egyptian herbaria, and to represent the genus in the study, the only available herbarium sample was collected from the United Arab Emirates. TABLE 1. Samples collected with their families, locations and dates of collection. (Families as proposed by the APG systems; 1998-2016) | Family | Code | Taxa | Site | Date | | | | | |--------------------|------|--|---|---------|--|--|--|--| | | 1 | **Corchorus olitorius L. ⁶ | Cultivated area, Nile Delta | October | | | | | | S.S. | 1 | **Corcnorus ontorius L.* | Cultivated area, Mile Delta | 2019 | | | | | | Tiliaceae s.s. | 2 | Grewia pondoensis Burret. 6 | Shehab Mazhar botanic garden Giza, Egypt | June | | | | | | iace | 2 | Grewia ponaoensis Bullet. | Shehao Mazhar botanie garden Giza, Egypt | 2019 | | | | | | Ξ | 3* | Triumfetta flavescens Hochst. ex A. Rich ⁶ | Gebel Elba | March | | | | | | | | Trumpetta flavescens Hoonst. ex 13. Ren | | 1997 | | | | | | | 4 | **Brachychiton discolor F. Muell. 3 | Shehab Mazhar botanic garden, Giza, | June | | | | | | | • | • | Egypt | 2019 | | | | | | | 5 | Dombeya wallichii (Lindl.) Benth. ex Baill. 4 | Shehab Mazhar botanical garden, Giza, | June | | | | | | S. | 5 | | Egypt | 2019 | | | | | | ae s | 6 | Guazuma ulmifolia Lam. 5 | Shehab Mazhar botanic garden, Giza, | June | | | | | | ace | V | onazama amiyona zam. | Egypt | 2019 | | | | | | Sterculiaceae s.s. | | | Gebel Elba, Wadi Eikwan upstream, | | | | | | | ster | 7* | Melhania denhamii R. Br. 4 | southeast of Halaieb. | March | | | | | | 0 1 | | | N. 22 00' 00" E. 36 39' 21". Code 18750 | 1998 | | | | | | | 0 | De C. C. A. Will 14 | Shehab Mazhar botanic garden, Giza, | June | | | | | | | 8 | Pterospermum acerifolium (L.) Willd. ⁴ | Egypt | 2019 | | | | | | | 9 | **Bombax. ceiba L. ¹ | Faculty of Agriculture botanic garden, | March | | | | | | s: | 9 | Bombax. Celba L. | Alex. University | 2020 | | | | | | ae s | 10 | **Ceiba pentandra (L.) Gaertn. ¹ | Shehab Mazhar botanic garden, Giza, | June | | | | | | ıce | 10 | Cetoa penianara (L.) Gaerin. | Egypt | 2019 | | | | | | Bombacaceae s.s. | 11 | Ceiba speciosa (A.StHil., A.Juss. & Cambess.) $^{\it l}$ | s.) ¹ Faculty of Science botanic garden, Alex. | | | | | | | oml | 11 | Ravenna | University. | 2018 | | | | | | Ř | 12 | Pseudobombax ellipticum (Kunth) Dugand 1 | Shehab Mazhar Botanic garden, Giza, | June | | | | | | | 12 | 1 Seudocomoux empucum (Kunin) Dugand | Egypt | 2019 | | | | | TABLE 1. Cont. | Family | Code | Taxa | Site | Date | |----------------|------|--|--|---------------| | | 13 | **Abelmoschus esculentus (L.) Moench ² | Shehab Mazhar botanic garden, Giza, Egypt. | June
2019 | | | 14 | **Abutilon hirtum (Lam.) Sweet. ² | Shehab Mazhar botanic garden, Giza, Egypt. | June
2018 | | | 15 | Alcea rosea L. ² | Faculty of science botanic garden, Alex. University | May
2018 | | | 16 | ** Gossypium herbaceum L. ² | Shehab Mazhar botanic garden, Giza, Egypt. | June
2019 | | | 17 | **Hibiscus syriacus L. ² | Shehab Mazhar botanic garden, Giza, Egypt | June
2019 | | eae s.s. | 18 | Lagunaria patersonia (Andrews) G.Don | Faculty of science botanic garden, Alex. University | May
2018 | | Malvaceae s.s. | 19 | **Malva parviflora L. ² | Alexandria Burg El-Arab coastal road | April
2019 | | _ | 20 | Malvaviscus arboreus Dill ex Cav. ² | Shehab Mazhar botanic garden, Giza, Egypt | June
2019 | | | 21* | Pavonia arabica Hochst & Steud. ² ex Boiss. | Headland of beach north of oceanic hotel,
Khor Fakkan, United Arab Emirates. Code
3696 | May
1998 | | | 22* | Sida alba L. ² | Wadi Feiran (St. 123)
N. 28 45' 48" E. 33 23' 448" A. 242 m. Code
19123 | May
2005 | | | 23 | **Thespesia populnea (L.) Sol. ex Corrêa. ² | Shehab Mazhar botanic garden, Giza, Egypt | June
2019 | ¹ Bombacoideae ² Malvoideae ³ Sterculioideae ⁴ Dombeyoideae * Samples obtained from herbarium sheets, ** Samples used in sequence analysis The extraction of DNA from Malvaceae *s.l.* species was more problematic, especially for fresh specimens, than for herbarium specimens due to the presence of a large amount of polysaccharides and mucilage in their
leaves. Therefore, molecular studies were conducted on the specimens by applying the modified extraction method of Dellaporta et al. (1983) to obtain good extraction and purification results. #### ISSR analysis A set of 10 primers obtained from Sigma was used to prescreen the species under investigation for polymorphisms. Only five primers produced clear scorable bands with good reproducibility and amplification patterns. The primers selected for PCR amplification were described by Celka et al. (2012) and Vanijajiva (2012) (Table 2). The nucleotide sequences with a GC content of 33-80% were selected to generate the DNA fingerprint profiles of all the genotypes. The selected primers had di-, tri- or pentanucleotide repeats anchored or not anchored at 3'. The annealing temperatures were optimized for those primers before performing the experiments. ## SRAP analysis Several combinations of 6 forward primers (Me1, Me2, Me3, Me4, Me7 and Me8) and 5 reverse primers (Em1, Em2, Em4, Em6 and Em10) were used. The abovementioned primers and their 11 combinations were selected according to Li & Quiros (2001) and Badrkhani et al. (2014) based on the maximum number of polymorphic bands obtained in their study (Table 3). ⁵ Byttnerioideae ⁶ Grewioideae PCR amplification, cloning and sequencing of the ITS region The entire ITS region (ITS1, 5.8S and ITS2) was sequenced following PCR amplification from the genomic DNA. The primers used were 5' TCCGTAGGTGAACCTGCGG 3' for ITS1 and 5' TCCTCCGCTTATTGATATGC 3' for ITS4. PCR amplification was carried out according to Tate et al. (2005). The DNA products obtained after electrophoresis were cut, weighed, recovered and purified according to the protocol of the MEG Aquick-spin total fragment DNA purification kit (iNtRON Biotechnology, Inc., South Korea). TABLE 2. Primer sequences, Repeat motif, GC% and T_m used in the ISSR analysis | Primer | Sequence 5' 3' | Repeat motif | GC% | T _m (°C) | |--------|------------------------|----------------------|-----|---------------------| | ISSR٣ | AG AG AG AG AG AG T | $(AG)_7$ | 47 | 44 | | IS810 | GA GA GA GA GA GA GA T | $(GA)_8$ | 47 | 50 | | IS813 | CT CT CT CT CT CT CT T | $(CT)_8$ | 47 | 50 | | IS834 | ATG ATG ATG ATG | $(ATG)_5$ | 33 | 40 | | IS846 | GGGT GGGGT G | (GGGGT) ₂ | 80 | 54 | TABLE 3. Primer sequences and their combinations employed in the SRAP analysis | Easyand naimons | Forward sequence | Davana nuimana | Reverse sequence | | | | | | |-----------------|-------------------|-----------------|--------------------|--|--|--|--|--| | Forward primers | 5' 3' | Reverse primers | 5' 3' | | | | | | | Me1 | TGAGTCCAAACCGGATA | Em1 | GACTGCGTACGAATTAAT | | | | | | | Me2 | TGAGTCCAAACCGGAGC | Em2 | GACTGCGTACGAATTTGC | | | | | | | Me3 | TGAGTCCAAACCGGAAT | Em4 | GACTGCGTACGAATTTGA | | | | | | | Me4 | TGAGTCCAAACCGGACC | Em6 | GACTGCGTACGAATTGCA | | | | | | | Me7 | TGAGTCCAAACCGGTTG | Em10 | GACTGCGTACGAATTTAG | | | | | | | Me8 | TGAGTCCAAACCGGTGT | | | | | | | | | | Primer o | combinations | | | | | | | | Me1-Em2 | Me3-Em1 | Me4-Em2 | Me8-Em1 | | | | | | | Me2-Em1 | Me3-Em2 | Me4-Em6 | Me8-Em2 | | | | | | | Me2-Em6 | Me3-Em4 | Me7-Em10 | | | | | | | Aliquots of each amplified product were run on a 2% agarose gel with ethidium bromide, visualized on a UV transilluminator, and photographed by a gel documentation system. A one kilo base pair DNA ladder (Sigma) was used as a DNA fragment size marker. ### Statistical analyses The ISSR and SRAP gels were analyzed through TotalLab image analysis software (version 1.1.4301, 26877). Only intensely stained unambiguous bands were used in the analysis. The bands were scored as binary characters: absent (0) or present (1). Six different parameters and indices were used to characterize the efficiency of each marker and primer to detect polymorphisms among the different species used. The percentage polymorphisms (pb%) was calculated. The Polymorphic Information Content (PIC), Resolving Power (Rp) and Marker Index (MI) were subsequently evaluated according to De Riek et al. (2001), Sorkheh et al. (2007), and Prevost & Wilkinson (1999), respectively. The Effective Multiplex Ratio (EMR) and Multiplex Ratio (MR) were calculated according to Powell et al. (1996). The data were obtained by scoring the ISSR and SRAP profiles with different primers, individually and collectively, and subsequently constructing a similarity matrix using Jaccard's coefficients (Jaccard, 1908). The similarity values used for Cluster analysis were calculated by using the Unweighted Pair Group Method with the Arithmetic means (UPGMA) algorithm, and dendrogram construction was performed with the PAST program v.3 (Hammer et al., 2001). ## Phylogenetic data Purified DNA from 10 out of the 23 studied species was sequenced by Macrogene Company (South Korea; Table 1). Elaeocarpus nitentifolius Merr. & Chun was chosen as an outgroup (Judd & Manchester, 1997). The sequences were subjected to pairwise and multiple sequence alignment using CLUSTAL W version 2 (Thompson et al., 1997). Phylogenetic relationships were constructed using MEGA version 11 (Tamura et al., 2021) and another software package, PAUP version 4 (Swofford, 2002), to assess the phylogenetic relationships. In MEGA software, aligned sequences were analyzed by p-distance and UPGMA methods of sorting. In PAUP software, aligned sequences were evaluated by the Wagner parsimony method using 'branch & bound', 'heuristic' and the parsimony method of likelihood. Moreover, the software generated a phylogenetic tree based on transition/ transversion ratios, the consistency index (CI) and the homoplasy index (HI) Farris (1989 a, b). #### Results #### ISSR analysis Five primers out of ten ISSR with di-, triand pentanucleotides were used to screen 23 species of Malvaceae *s.l.* These primers produced clear, reproducible bands of genomic DNA, as represented by ISSR34 (Figs. 1, S1). The total and specific number of bands as well as the percentage of polymorphisms are presented in Table 4. The generated bands were variable in size and number depending upon their sequence repeat motifs in different species. The polymorphic amplicon size ranged from 100 to 1000bp, with 100% polymorphism. The use of ISSR primers was highly productive and polymorphic, with a total of 78 bands and seven specific bands within the examined species. The number of amplified amplicons ranged from 11 to 19, with a mean of 15.6 amplicons per primer. Abutilon hirtum (Lam.) Sweet produced the greatest number of bands and the highest percentage of polymorphisms (33 and 42.37%, respectively). However, Pavonia arabica Hochst. & Steud. ex Boiss. amplified the least number of bands and percentage polymorphism (4 and 5.17%, respectively). For each primer, 3 specific bands were from ISSRT, 2 from ISSR13, and 1 from both ISSR10 and ISSR34; however, no specific bands were from ISSR46. A. hirtum and Ceiba speciosa (A.St.-Hil., A.Juss. & Cambess.) Ravenna gave the maximum number of specific bands (2 bands). While each of Lagunaria patersonia (Andrews) G. Don, Malva parviflora L. and Malvaviscus arboreus Dill. ex Cav. produced the minimum values (1 band) (Tables 4, 5). Fig. 1. Bands produced by using ISSR34 primer TABLE 4. Indices amplified with the 5 ISSR primers for the examined species of Malvaceae s.l. | Primer combination | TB ¹ | PB ² | MB^3 | % PB ⁴ | SB ⁵ | PIC ⁶ | MI^7 | RP ⁸ | EMR ⁹ | |--------------------|-----------------|-----------------|--------|-------------------|-----------------|------------------|--------|-----------------|------------------| | ISSR3 | 18 | 18 | 0 | | 2 | 0.75 | 55.44 | 8.22 | 74 | | ISSR10 | 16 | 17 | 0 | | 1 | 0.59 | 74.60 | 15.75 | 126 | | ISSR13 | 14 | 15 | 0 | 100% | 2 | 0.55 | 48.66 | 12.57 | 88 | | ISSR34 | 19 | 19 | 0 | | 1 | 0.72 | 99.76 | 14.63 | 139 | | ISSR46 | 11 | 11 | 0 | | 0 | 0.39 | 54.08 | 17.64 | 139 | | Total | 78 | 78 | 0 | | 7 | 3.00 | 332.55 | 68.81 | 566.00 | | Mean | - | _ | - | - | - | 0.60 | 66.51 | 13.76 | 113.20 | ¹Total number of bands, ²Polymorphic bands, ³Monomorphic bands, ⁴Percentage of polymorphism, ⁵Specific bands, ⁶Polymorphic information content, ⁷Marker index, ⁸Resolution power, ⁹Effective multiplex ratio. TABLE 5. Band measurement of Malvaceae s.l. species amplified by the 5 ISSR primers | | l | | | l | | | | | | ĺ | | | ĺ | | | | | | ı | |--------------------------|-----|-------------|----------|-----|-------------|----------|---------|-------------|----------|------|-------------|----------|-----|-------------|----------|--------------------|-----------------|----------|---| | ndla nhi? | 6 | 0 | 20 | 9 | 0 | 38 | 2 | 0 | 14 | 7 | 0 | 37 | 4 | 0 | 36 | 28 | 0 | 35.0 | | | nənluqoq nisəqsəAT | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 14 | 4 | 0 | 21 | 3 | 0 | 27 | 6 | 0 | 12.5 | | | poidava ninova¶ | 0 | 0 | 0 | _ | 0 | 9 | 0 | 0 | 0 | 2 | 0 | 11 | _ | 0 | 6 | 4 | 0 | 5.2 | | | susvodyn sussiynyl | 9 | 0 | 33 | 9 | 1 | 38 | 7 | 0 | 20 | 7 | 0 | 37 | 4 | 0 | 36 | 30 | 1 | 38.8 | | | moltivang palaM | 7 | 0 | 39 | 9 | 0 | 38 | 4 | 0 | 29 | 9 | 0 | 32 | 4 | 0 | 36 | 27 | 0 | 34.6 | | | iinosvəinq ninnungnA | ∞ | 0 | 44 | 5 | 0 | 31 | 7 | 1 | 20 | 9 | 0 | 32 | 4 | 0 | 36 | 30 | 1 | 38.7 | | | suonings suosidiH | 7 | 0 | 39 | 7 | 0 | 4 | 4 | 0 | 29 | 4 | 0 | 21 | 7 | 0 | 64 | 29 | 0 | 39.2 | | | Соssypium herbaceum | 9 | 0 | 33 | 5 | 0 | 31 | 3 | 0 | 21 | 7 | 0 | 37 | 4 | 0 | 36 | 25 | 0 | 31.8 | | | nsea rosea | 2 | 0 | 11 | 9 | 0 | 38 | 5 | 0 | 36 | 9 | 0 | 32 | 3 | 0 | 27 | 22 | 0 | 28.6 | | | murih nolitudA | 9 | 1 | 33 | ∞ | 0 | 50 | 5 | 1 | 36 | 6 | 0 | 47 | 5 | 0 | 45 | 33 | 7 | 42.4 | | | snjuəjnəsə snyəsomjəqy | 7 | 1 | 39 | 3 | 0 | 19 | 2 | 0 | 14 | 7 | 0 | 37 | 5 | 0 | 45 | 24 | 1 | 30.8 | | | muətiqillə xndmodobuəs¶ | 2 | 0 | 11 | 9 | 0 | 38 | 3 | 0 | 21 | 7 | 0 | 37 | 5 | 0 | 45 | 23 | 0 | 30.5 | | | Ceiba speciosa | 4 | 0 | 22 | 9 | 0 | 38 | 4 | 0 | 29 | 10 | 1 | 53
| 9 | 0 | 55 | 30 | 7 | 39.1 | | | Ceiba pentandra | 0 | 0 | 0 | 5 | 0 | 31 | 3 | 0 | 21 | 9 | 0 | 32 | 9 | 0 | 55 | 20 | 0 | 27.7 | | | pdisə xadmod | 3 | 0 | 17 | ∞ | 0 | 50 | 4 | 0 | 29 | 9 | 0 | 32 | 4 | 0 | 36 | 25 | 0 | 32.6 | | | muilotirosa mumroqeorotA | 2 | 0 | 11 | 10 | 0 | 63 | 9 | 0 | 43 | 7 | 0 | 37 | 5 | 0 | 45 | 30 | 0 | 39.8 | rphism | | iimndnsh ninndlsM | - | 0 | 9 | 9 | 0 | 38 | 2 | 0 | 14 | 5 | 0 | 26 | 4 | 0 | 36 | 18 | 0 | 24.0 | polymo | | oiložimlu omuzoud | 4 | 0 | 22 | 9 | 0 | 38 | 4 | 0 | 29 | 9 | 0 | 32 | 4 | 0 | 36 | 24 | 0 | 31.2 | age of 1 | | Потьеул малісніі | 0 | 0 | 0 | 9 | 0 | 38 | 4 | 0 | 29 | 5 | 0 | 26 | 5 | 0 | 45 | 20 | 0 | 27.6 | Percent | | Brachychiton discolor | 0 | 0 | 0 | 3 | 0 | 19 | 2 | 0 | 14 | 7 | 0 | 37 | 3 | 0 | 27 | 15 | 0 | 19.4 | oands, 3 | | suəəsəavəl vyəfuniaL | 0 | 0 | 0 | 4 | 0 | 25 | 3 | 0 | 21 | 3 | 0 | 16 | 2 | 0 | 18 | 12 | 0 | 16.1 | ecific b | | Siensohnoq niwsvƏ | 0 | 0 | 0 | 9 | 0 | 38 | 5 | 0 | 36 | 5 | 0 | 26 | 5 | 0 | 45 | 21 | 0 | 29.0 | ıds, ² Sp | | Corchorus olitorius | 0 | 0 | 0 | 7 | 0 | 4 | 7 | 0 | 20 | 7 | 0 | 37 | 4 | 0 | 36 | 25 | 0 | 33.4 | r of bar | | рвиде | TAB | ${ m SB}^2$ | $PB\%^3$ | TAB | ${ m SB}^2$ | $PB\%^3$ | TAB^1 | ${ m SB}^2$ | $PB\%^3$ | TAB¹ | ${ m SB}^2$ | $PB\%^3$ | TAB | ${ m SB}^2$ | $PB\%^3$ | TAB^{1} | SB^2 | $PB\%^3$ | Total number of bands, ² Specific bands, ³ Percentage of polymorphism | | Primers | ٤ | SSE | | 0 | SEI | SI | ٤ ا | SE | SI | 78 | SEE | SI | 91 | 'SK | SI | τ | vlear | I | Total | Egypt. J. Bot. 64, No. 2 (2024) The efficiency of the ISSR primers slightly differed, as shown in Table 4. The PIC ranged from 0.39 (ISSR46) to 0.75 (ISSR3), with an average of 0. 60, and the MI varied from 48.66 (ISSR13) to 74.60 (ISSR10), with an average of 66.51. The average RP values were 13.76, which ranged from 8.22 (ISSR3) to 17.64 (ISSR46), with an average of 13.76. Additionally, the primer ISSR46 appeared to be the most efficient for assessing genetic diversity, as indicated by the high rate of RP. All primers showed 100% polymorphism with a high effective multiplex ratio (EMR), which varied from 88 (ISSR 13) to 139 (ISSR 34, ISSR 46), with a mean value of 113. #### SRAP analysis Using 11 primer combinations, clear, reproducible bands were produced, as represented by SRAP Me4-Em6 (Figs. 2, S1). The total and specific bands as well as the percentages of polymorphisms are shown in Table 6. Two hundred and seventeen out of 223 bands were polymorphic, with a few common bands (6), as shown in Table 6. *Hibiscus syriacus* L. achieved the maximum number of bands (90), while *P. arabica* produced the minimum number (25). Consequently, the percentage of polymorphisms ranged from 38.11% to 8.15 %, respectively. The studied taxa revealed a total of 23 specific bands were detected: 5 in *Bombax ceiba* L., 4 in Pterospermum acerifolium (L.) Willd, 3 in Ceiba pentandra (L.) Gaertn., 2 in both Corchorus olitorius L. and Grewia pondoensis Burret, and 1 in Triumfetta flavescens Hochst ex A.Rich, Guazuma ulmifolia Lam., C. speciosa, (Kunth) Dugand, Pseudobombax ellipticum Gossypium herbaceum L., H. syriacus and Sida alba L. The detected bands ranged from 1000 to 50bp with a high percentage of polymorphism ranging from 94% (the Me2-Em6, Me3-Em1 and Me4-Em2 primer combinations) to 100% (the Me2-Em1, Me3-Em2, Me3-Em4, Me4-Em6 and Me8-Em1 primer combinations). There were 5 specific bands corresponding to Me2-Em1, Me7-Em10 and Me8-Em1; 2 corresponding to Me1-Em2, Me2-Em6 and Me3-Em4; and 1 corresponding to Me4-Em6 and Me8-Em2 (Table 7). The efficacy of the 11 primer combinations based on the SRAP-PCR analysis (Table 6) was high, which was also reflected in the MR data (20.2). The PIC was 0.77, with values ranging from 0.61 (primer Me4-Em2) to 0.91 (primer Me8-Em1). The mean MI was 137.47, which varied from 66.3 (primer Me2-Em6) to 167.51 (primer Me4-Em6). The RP values ranged from 10.52 (primer Me8-Em1) to 16.95 (primer Me4-Em2), with an average of 14.04. The mean EMR value was 170, which varied from 102 to 175 for the primers Me2-Em6 and Me4-Em6, respectively. Fig. 2. SRAP of the primer combination Me4-Em6 TABLE 6. Indices amplified with the examined species of Malvaceae s.l. by the 11 SRAP primer combinations | Primer combinations | TB ¹ | PB ² | MB^3 | % PB ⁴ | SB ⁵ | PIC ⁶ | MI ⁷ | RP ⁸ | EMR ⁹ | |---------------------|-----------------|-----------------|--------|-------------------|-----------------|------------------|-----------------|-----------------|------------------| | | 21 | 20 | | 050/ | | 0.762 | 127.20 | 16.00 | 166.00 | | Me1-Em2 | 21 | 20 | 1 | 95% | 2 | 0.763 | 127.38 | 16.00 | 166.99 | | Me2-Em1 | 21 | 21 | 0 | 100% | 5 | 0.786 | 113.20 | 13.71 | 144.00 | | Me2-Em6 | 17 | 16 | 1 | 94% | 2 | 0.65 | 66.33 | 12.12 | 102.00 | | Me3-Em1 | 17 | 16 | 1 | 94% | 0 | 0.647 | 70.51 | 12.94 | 109.00 | | Me3-Em2 | 18 | 18 | 0 | 100% | 0 | 0.669 | 95.73 | 15.89 | 143.00 | | Me3-Em4 | 22 | 22 | 0 | 100% | 2 | 0.841 | 126.97 | 13.73 | 151.00 | | Me4-Em2 | 17 | 16 | 1 | 94% | 0 | 0.61 | 85.45 | 16.59 | 140.00 | | Me4-Em6 | 25 | 25 | 0 | 100% | 1 | 0.957 | 167.51 | 14.00 | 175.00 | | Me7-Em10 | 20 | 19 | 1 | 95% | 5 | 0.776 | 87.71 | 13.40 | 113.00 | | Me8-Em1 | 23 | 23 | 0 | 100% | 5 | 0.91 | 110.13 | 10.52 | 121.00 | | Me8-Em2 | 22 | 21 | 1 | 95.5% | 1 | 0.809 | 137.47 | 15.55 | 170.00 | | Total | 223 | 217 | 6 | 97.3% | 23 | 8.42 | 1188.40 | 154.44 | 1534.99 | | Mean | - | - | - | - | - | 0.77 | 108.04 | 14.04 | 139.54 | ¹Total number of bands, ²Polymorphic bands, ³Monomorphic bands, ⁴Percentage of polymorphism, ⁵Specific bands, ⁶Polymorphic information content, ⁷Marker index, ⁸Resolution power, ⁹Effective multiplex ratio The dendrogram based on the banding patterns for each of the ISSR and SRAP analyses did not show good clustering, and therefore, a combined dendrogram was constructed according to Ward's method using the Jaccard coefficient (Fig. 3). It is distinguished into two major clades; I and II. Clade 'I' included five species of (Malvaceae s.s. which are Abelmoschus esculentus L.Moench, P. arabica, H. syriacus, M. arboreus and Alcea rosea L.), while Clade 'II' included the remaining eighteen species with intermingled families (Tiliaceae s.s., Sterculiaceae s.s. and Bombacaceae s.s.) in several subclades. ## ITS polymorphisms In the present study, ten species were selected for the ITS sequence technique: C. olitorius, Brachychiton discolor F. Muell, B. ceiba, C. pentandra, A. esculentus, Abutilon hirtum, G. herbaceum, H. syriacus, M. parviflora and Thespesia populnea (L.) Sol.êx Correa. These species represented the distinct subclades of the combined dendrogram, in addition to the problematic Malvaceae s.s species. The ITS sequences produced a single band at a size of 700 bp (Fig. 4). The sequence data of the ten species were aligned pairwise using CLUSTAL W software (S2), and the alignment results are summarized in Table 8. The length of the ITS region varied from 677bp in A. hirtum to 798 bp in C. olitorious, with a mean of 727bp. The 'G+C' content for the entire spacer region ranged from 54.06% (A. hirtum) to 67.23% (B. ceiba), with a mean of 60.95%. The numbers of conserved and variable sites within the sequences were 287 and 511, respectively. The sequencing data for all the examined ten species have been deposited in GenBank/NCBI under the accession numbers OQ302173-OQ302182. ## ITS phylogenetic analysis The phylogenetic relationship was constructed using MEGA and PAUP software, and the simulation analysis was carried out by choosing the ITS sequence of *E. nitentifolius* as an outgroup from the GenBank/ NCBI sequence database (GenBank: KP093062.1). The constructed phylogenetic trees achieved the same topology. In this study, the ten Malvaceae s.l. species were classified as subfamilies or tribes rather than at the family level. With the PAUP software, the ITS dataset was analyzed via the parsimony method (using the likelihood and pairwise comparisons of nucleotide substitutions), which revealed that transversions were more common than transitions (Fig. 5, Table 9). In the dendrogram and phylogenetic tree, two major clades were distinguished: 'I' and 'II'. The major clade 'I' contained the outgroup (E. nitentifolius), and the major clade 'II' contained C. olitorius (Grewioideae) in clade 'A' from the rest of the species in clade 'B'. Clade 'B' is distinguished into two groups: 'a' and 'b'. Bombacoideae (B. ceiba and C. pentandra) were assembled in group 'a', and both Sterculioideae and Malvoideae were assembled in group 'b', with 2 branches, '1' and '2'. The four tribes were distinct in Malvoideae, Abutilae (A. hirtum), Gossypie (G. herbaceum and Thespesia populnea), Hibiscie (A. esculentus and H. syriacus) and Malvie (M. parviflora). The transition/ transversion (Ti/Tv) ratios ranged from 0.82 in C. olitorius (Grewioideae) to 1.158 in T. populnea (Malvoideae, tribe Gossypie). TABLE 7. Genetic diversity and relationship of Malvaceae s.l. species revealed by SRAP marker and their means | ndln nhiZ | ~ | 0 | 33.33 | 7 | 0 | 33.33 | 4 | - | 17.65 | 4 | 0 | 17.65 | 6 | 0 | 50.00 | |----------------------------|------|-----------------|-------|-----|---------|-------|-----|----------------|-------|------|---------|---------------|------|---------|-------| | vəu ndod visədsəyL | 9 | 0 | 23.81 | 3 | 0 | 14.29 | 3 | 0 | 11.76 | S | 0 | 23.53 | 3 | 0 | 16.67 | | nsidnyn ninovn¶ | 3 | 0 | 9.52 | 3 | 0 | 14.29 | 2 | 0 | 5.88 | - | 0 | 0.00 | 3 | 0 | 16.67 | | enovodra enoeivavlaM | ∞ | 0 | 33.33 | 7 | 0 | 33.33 | 5 | 0 | 23.53 | 3 | 0 | 11.76 | ∞ | 0 | 44.44 | | nvoltivnnq nvlnM | 7 | 0 | 28.57 | ∞ | 0 | 38.10 | 3 | 0 | 11.76 | 7 | 0 | 35.29 | ∞ | 0 | 44.44 | | iinozvətaq nivanugad | 7 | 0 | 28.57 | 7 | 0 | 33.33 | 4 | 0 | 17.65 | 9 | 0 | 29.41 | 9 | 0 | 33.33 | | enoninge enoeidiH | ∞ | 0 | 33.33 | 6 | - | 42.86 | ∞ | 0 | 41.18 | 6 | 0 | 47.06 | 9 | 0 | 33.33 | | Gossypium herbaceum | 7
 0 | 28.57 | 5 | 0 | 23.81 | 5 | 0 | 23.53 | 4 | 0 | 17.65 | S | 0 | 27.78 | | nseor nsolA | 7 | 0 | 28.57 | 9 | 0 | 28.57 | 4 | 0 | 17.65 | 9 | 0 | 29.41 | 4 | 0 | 22.22 | | mutviń nolitudA | 6 | 0 | 38.10 | 7 | 0 | 33.33 | 5 | 0 | 23.53 | 9 | 0 | 29.41 | ∞ | 0 | 44.44 | | snµəsompəqy | 6 | 0 | 38.10 | ∞ | 0 | 38.10 | 7 | 0 | 35.29 | 7 | 0 | 35.29 | 7 | 0 | 38.89 | | xndmodobu9s¶
muəñqillə | 9 | 0 | 23.81 | 9 | 0 | 28.57 | 4 | 0 | 17.65 | 2 | 0 | 5.88 | 6 | 0 | 50.00 | | neoiseqe ndis2 | ∞ | 0 | 33.33 | 7 | 0 | 33.33 | 3 | 0 | 11.76 | ∞ | 0 | 41.18 | ∞ | 0 | 44.44 | | Seiba pentandra | ∞ | 0 | 33.33 | 7 | 0 | 33.33 | 9 | 0 | 29.41 | S | 0 | 23.53 | 2 | 0 | 11.11 | | Bombax ceiba | 10 | - | 42.86 | 6 | 0 | 42.86 | 9 | 1 | 29.41 | 8 | 0 | 11.76 | 9 | 0 | 33.33 | | mumvəqeorət
muilolivəən | 6 | 0 | 38.10 | 8 | - | 23.81 | 6 | - | 47.06 | S | 0 | 23.53 | 6 | 0 | 50.00 | | iimadnəb ainadləM | 4 | 0 | 14.29 | 4 | 0 | 19.05 | 2 | 0 | 5.88 | 2 | 0 | 5.88 | 3 | 0 | 16.67 | | nilołimlu nmuznud | 10 | - | 42.86 | 10 | 0 | 47.62 | 9 | 0 | 29.41 | 7 | 0 | 35.29 | 9 | 0 | 33.33 | | лотьеул майсhii | 6 | 0 | 38.10 | 4 | 0 | 19.05 | 3 | 0 | 11.76 | 9 | 0 | 29.41 | ∞ | 0 | 44.44 | | Brachychiton discolor | 3 | 0 | 9.52 | 5 | 0 | 23.81 | 1 | 0 | 0.00 | 2 | 0 | 5.88 | 8 | 0 | 16.67 | | ะกรวรรงกฤ กปรุโตมiาT | 4 | 0 | 14.29 | 2 | - | 9.52 | 2 | 0 | 5.88 | 2 | 0 | 5.88 | 9 | 0 | 33.33 | | siznsobnoq niws10 | ∞ | 0 | 33.33 | ∞ | 0 | 38.10 | 9 | 0 | 29.41 | S | 0 | 23.53 | 7 | 0 | 38.89 | | Corchorus olitorius | 10 | 0 | 42.86 | 7 | 2 | 33.33 | 8 | 0 | 23.53 | S | 0 | 23.53 | 6 | 0 | 50.00 | | spueq | 1TAB | ² SB | 3РВ% | TAB | 2 SB | ³PB% | TAB | 2 SB | 3РВ% | 1TAB | 2 SB | 3 PB % | 'TAB | 2 SB | 3РВ% | | Primer combinations | 7 | ma-le | M | | Im3-2 | SəM | 9 | m ∃- 23 | M | 1 | з-Еш | οM | 7 | Zm∃-£ | PW | Egypt. J. Bot. 64, No. 2 (2024) | | ndln nhi2 | | 0 | 36.36 | ∞ | 0 | 41.18 | 5 | 0 | 20.00 | 9 | 0 | 25.00 | 7 | 0 | 30.43 | 6 | 0 | 36.36 | 75 | 1 | 31.03 | | |----------------|------------------------------|---------|------------------|-------|------|---------|-------|------|---------|-------------------|------|-----------------|-------|-----|---------|-------|-----|-----------------|-------|-----|----------|-------|---| | | vəu ndod | - | 0 | 4.55 | 9 | 0 | 29.41 | 9 | 0 | 24.00 | 2 | 0 | 5.00 | - | 0 | 4.35 | 7 | 0 | 27.27 | 43 | 0 | 16.78 | | | | nsidava ainova¶ | 2 | 0 | 60.6 | - | 0 | 0.00 | 4 | 0 | 16.00 | 2 | 0 | 5.00 | 2 | 0 | 8.70 | 2 | 0 | 4.55 | 25 | 0 | 8.15 | | | | Malvaviscus
arboreus | 7 | 0 | 31.82 | ∞ | 0 | 41.18 | 7 | 0 | 28.00 | 5 | 0 | 20.00 | 0 | 0 | 0.00 | 7 | 0 | 27.27 | 65 | 0 | 26.79 | | | | molivna pariflora | ∞ | 0 | 36.36 | ∞ | 0 | 41.18 | ∞ | 0 | 32.00 | 9 | 0 | 25.00 | S | 0 | 21.74 | = | 0 | 45.45 | 79 | 0 | 32.72 | | | | Lagunaria
iinoersinq | 6 | 0 | 40.91 | 7 | 0 | 35.29 | ∞ | 0 | 32.00 | S | 0 | 20.00 | 9 | 0 | 26.09 | 9 | 0 | 22.73 | 11 | 0 | 29.03 | | | | Ribiscus syriacus | 10 | 0 | 45.45 | 10 | 0 | 52.94 | Ξ | 0 | 44.00 | 7 | 0 | 30.00 | S | 0 | 21.74 | 7 | 0 | 27.27 | 06 | - | 38.11 | | | | Gossypium
herbaceum | 5 | 0 | 22.73 | ∞ | 0 | 41.18 | 7 | 0 | 28.00 | ∞ | 0 | 35.00 | 11 | 1 | 47.83 | ~ | 0 | 31.82 | 73 | 1 | 29.81 | | | | ขอร <i>ด</i> ง ขอว <i>\</i> | ∞ | 0 | 36.36 | ∞ | 0 | 41.18 | 12 | 0 | 48.00 | 7 | 0 | 30.00 | 6 | 0 | 39.13 | ∞ | 0 | 31.82 | 62 | 0 | 32.08 | | | | mutriń nolitudA | 6 | 0 | 40.91 | 9 | 0 | 29.41 | 10 | 0 | 40.00 | 9 | 0 | 25.00 | 6 | 0 | 39.13 | 6 | 0 | 36.36 | 84 | 0 | 34.51 | | | | รทุบอุเกวรอ
รทบวรอนบุอqy | 7 | 0 | 31.82 | 7 | 0 | 35.29 | ∞ | 0 | 32.00 | 3 | 0 | 10.00 | 0 | 0 | 0.00 | 9 | 0 | 22.73 | 69 | 0 | 28.86 | | | | xvqmoqopnəsA
mnəixdillə | 7 | 0 | 31.82 | 9 | 0 | 29.41 | ∞ | 0 | 32.00 | 3 | 0 | 10.00 | 5 | 1 | 21.74 | 11 | 0 | 45.45 | 29 | 1 | 26.94 | | | | nsoissys ndiss | 10 | 1 | 45.45 | 9 | 0 | 29.41 | 6 | 0 | 36.00 | 4 | 0 | 15.00 | 9 | 0 | 26.09 | 6 | 0 | 36.36 | 78 | 1 | 32.03 | | | | Seiba pentandra | 0 | 0 | 0.00 | - | 0 | 0.00 | 6 | 0 | 36.00 | 10 | 7 | 45.00 | 7 | 0 | 30.43 | 6 | - | 36.36 | 64 | 3 | 25.32 | | | | ndisə xndmod | 10 | 0 | 45.45 | 9 | 0 | 29.41 | 12 | - | 48.00 | 7 | 7 | 30.00 | 9 | 0 | 26.09 | 10 | 0 | 40.91 | 85 | vo | 34.55 | | | | mumvəqsəvət¶
muilofivəəv | 10 | 0 | 45.45 | 9 | 0 | 29.41 | ∞ | 0 | 32.00 | 7 | 0 | 30.00 | 9 | 7 | 26.09 | ~ | 0 | 31.82 | 82 | 4 | 34.30 | ш | | | ninndləM
iimndnəb | 9 | 0 | 27.27 | 5 | 0 | 23.53 | 4 | 0 | 16.00 | - | 0 | 0.00 | 2 | 0 | 8.70 | 4 | 0 | 13.64 | 37 | 0 | 13.72 | lymorphism | | | omuzonƏ
vilofimlu | 7 | 0 | 31.82 | 10 | 0 | 52.94 | 6 | 0 | 36.00 | 4 | 0 | 15.00 | 7 | 0 | 30.43 | 8 | 0 | 31.82 | 84 | - | 35.14 | f polyn | | | Dombeya
iidəilaw | 7 | 0 | 31.82 | ∞ | 0 | 41.18 | 6 | 0 | 36.00 | ~ | 0 | 35.00 | 7 | 0 | 30.43 | 7 | 0 | 27.27 | 92 | 0 | 31.32 | ntage o | | | В касһусһітоп
Аізсоlок | 9 | 0 | 27.27 | - | 0 | 0.00 | S | 0 | 20.00 | 1 | 0 | 0.00 | 4 | 0 | 17.39 | 9 | 0 | 22.73 | 37 | 0 | 13.02 | , ³Perce | | | ntiəlmuivT
znəəzəvnit | - | 0 | 4.55 | S | 0 | 23.53 | 3 | 0 | 12.00 | 2 | 0 | 5.00 | 3 | 0 | 13.04 | 3 | 0 | 60.6 | 33 | 1 | 12.37 | s bands | | | oiword
siznoobnoq | 3 | 0 | 13.64 | S | 0 | 23.53 | S | 0 | 20.00 | 3 | - | 10.00 | ∞ | 1 | 34.78 | 9 | 0 | 22.73 | 64 | 7 | 26.18 | Specific | | | Corchorus
olitorius | 10 | 0 | 45.45 | 5 | 0 | 23.53 | ~ | 0 | 32.00 | 7 | 0 | 30.00 | 5 | 0 | 21.74 | 10 | 0 | 40.91 | 81 | 7 | 33.35 | ands, 4 | | Cont. | spueq | 'TAB | 2 SB | 3PB% | 'TAB | 2 SB | ³PB% | 'TAB | 2 SB | ³PB% | 'TAB | ² SB | ³РВ% | TAB | 2 SB | 3PB% | TAB | ² SB | ³РВ% | TAB | ^{2}SB | 3PB% | er of b | | TABLE 7. Cont. | Ргітег
combinations | | , m∃- | | | 2m∃- | | | | -4 ₉ M | | 01m3- | | | լաց-։ | | | Zm3-8 | | | Mean | | ¹ Total number of bands, ² Specific bands, ³ Percentage of pol | Egypt. J. Bot. 64, No. 2 (2024) Fig. 3. Ward's dendrogram using Jaccard coefficient of Malvaceae s.l. species based on combined molecular markers (ISSR and SRAP) Fig. 4. The amplified product of the ITS region (approx. 700 bp) for 23 Malvaceae s.l. [M: 1kbp marker/ladder] TABLE 8. The number of private segregating sites and the number of shared polymorphisms among different species of the 10 selected Malvaceae s.l. species | Species | Length (bp) | A | T | C | G | G+C
content (%) | |------------------------|-------------|-------------|---------------|-----------|-------------|--------------------| | Corchorus olitorius | 798 | 163 (20%) | 162 (21%) | 233 (29%) | 240 (30%) | 59.27 | | Brachychiton discolor | 745 | 155 (20%) | 134 (20%) | 208 (27%) | 248 (33%) | 61.21 | | Bombax ceiba | 711 | 117 (16%) | 116 (17%) | 235 (33%) | 243 (34%) | 67.23 | | Ceiba pentandra | 706 | 128 (18%) | 117 (18%) | 221 (31%) | 240 (33%) | 65.30 | | Abelmoschus esculentus | 735 | 152 (20%) | 126 (19%) | 218 (29%) | 239 (32%) | 62.18 | | Abutilon hirtum | 677 | 155 (22%) | 156 (25%) | 181 (26%) | 185 (27%) | 54.06 | | Gossypium herbaceum | 705 | 143 (20%) | 137 (21%) | 203 (28%) | 222 (31%) | 60.28 | | Hibiscus syriacus | 727 | 151 (20%) | 153 (23%) | 209 (28%) | 214 (29%) | 58.18 | | Malva parviflora | 714 | 140 (19%) | 134 (20%) | 218 (30%) | 222 (31%) | 61.62 | | Thespesia populnea | 755 | 153 (20%) | 148 (20%) | 219 (29%) | 235 (31%) | 60.13 | | Mean | 727 | 145 (19.5%) | 138.8 (20.4%) | 214 (29%) | 228 (31.1%) | 60.95% | Abelmoschus Hibiscus Malva Malyadendnina Clade Malvoideae. Abutilon Thespesia Gosyipium Sterculioideae Brachycheton Bombax Bombacoideae Cieba Byttnerina Grewioideae Corchorus Clade Outgroup Elaeocarpus 511 Fig. 5. UPGMA phylogenetic tree based on ITS sequencing of 10 Malvaceae s.l. species generated by MEGA software with the outgroup Egypt. J. Bot. 64, No. 2 (2024) Number of variable site Mean 996.0 0.848 0.913 1.086 1.144 1.158 0.824 0.82 1.04 1.01 TABLE 9. Transition/transversion (Ti/Tv) ratios obtained by PAUP software according to the aligned sequence of ITS for the ten selected species of Malvaceae s.l. populnea Thespesia 68.0 0.75 98.0 98.0 0.79 1.00 92.0 0.82 3.69 parviflora Malva 68/89 0.84 1.10 0.74 0.73 0.67 96.0 0.94 0.89 Hibiscus syriacus 71/80 72/84 98.0 1.30 0.90 0.84 0.81 1.21 1.01 Gossypium herbaceum 48/13 72/86 06/29 0.79 0.75 0.99 0.88 0.79 0.83 Abutilon hirtum 71/86 70/85 64/71 02/22 0.91 1.90 0.91 1.29 1.11 Abelmoschus esculentus 02/99 20/02 71/72 51/39 72/72 0.74 1.07 1.04 0.90 pentandra Ceiba84/107 92/02 83/111 83/82 02/06 83/99 0.80 0.87 0.83 Bombax 106/56 89/104 ceiba0.78 40/48 76/71 82/28 87/91 0.91 Brachychiton 90/103 69/103 92/101 86/95 81/94 64/87 66/8/ 79/97 discolor 98.0 Corchorus 79/100 77/103 olitorius 80/93 66/LL 66/08 71/79 72/99 **L8/6L** 71/83 Abelmoschus esculentus Gossypium herbaceum Brachychiton discolor Corchorus olitorius Thespesia populnea Hibiscus syriacus Ceiba pentandra Malva parviflora Abutilon hirtum Bombax ceiba Species Egypt. J. Bot. 64, No. 2 (2024) Parsimony analysis with accelerated transformation character state optimization (ACCTRAN) yielded a tree length of 1132 steps. After excluding the uninformative characters, the consistency index (CI) was 0.671, and the homoplasy index (HI) was 0.329. #### Discussion Molecular data, improvements in DNA sequencing and computational power allowed the construction of phylogenetic relationships and provided an enhanced understanding of evolutionary processes (Besse, 2014). Based on molecular analyses, Malvaceae was placed in the subclass Dilleniidae. According to Bayer et al. (1999), Malvaceae s.l. was divided into nine subfamilies: Bombacoideae, Brownlowioideae, Byttnerioideae, Dombeyoideae, Grewioideae, Helicteroideae, Malvoideae, Sterculioideae and Tilioideae. Baum et al. (1998), Kubitzki & Chase (2003), Baum et al. (2004) and Wilkie et al. (2006) claimed that groups within Malvaceae s.l. require extensive review to provide accommodation for its molecular-based subfamilies. Weising et al. (2006)
supported the use of molecular markers to detect variability among closely related taxa. The present study aimed to clarify the debate between classical and modern circumscription of Malvaceae s.l. through molecular analyses. Molecular analyses were performed by using 301 molecular characteristics (78 ISSR and 223 SRAP bands) and highlighting the phylogenetic relationships among the studied taxa. The inter-simple sequence repeats (ISSR) is a dominant marker that have been successfully used in genetic diversity and evolutionary studies in Malvaceae s.l. (Celka et al., 2012; Vanijajiva, 2012). Similarly, sequence-related amplified polymorphism (SRAP) is a codominant molecular marker introduced by Li & Queros (2001) that targets coding regions within the genome and is frequently used for gene tagging and genetic diversity (Badrkhani et al., 2014). The primer ISSR34 had the maximum number of amplified bands (19), while ISSR3 had the greatest number of specific bands (3). From an efficiency point of view, ISSR34 attained the maximum values for the PIC, MI, RP and EMR indices, followed by the ISSR3 primer. The present study recommends the use of these two primers, especially ISSR34, for the distinctiveness among taxa of Malvaceae s.l. A. hirtum amplified the maximum number of bands (33) and consequently the largest polymorphism percentage (42.37%). While P. arabica produced the lowest band and polymorphism percentage values (4 and 5.17%, respectively). Both A. hirtum and C. speciosa share the maximum number of specific bands (2). Using the SRAP technique, the percentage of polymorphisms revealed by the six primer combinations ranged from 94-95.5%, with one common band per primer. Therefore, the study suggested the use of these primer combinations for the identification of Malvaceae s.l. taxa. Five primer combinations generated 100% polymorphism without any common bands. These primers can be used as distinctive markers among taxa. The primer combination Me4-Em6 achieved the maximum number of bands (25) and the highest values for the PIC, MI, RP and EMR indices. The combinations of Me2-Em1, Me7-Em10 and Me8-Em1 generated the most specific bands (5 bands each). H. syriacus was characterized by the highest number of bands (90) and percentage polymorphism (38.11%); on the other hand, P. arabica had the lowest number of bands (25) and percentage polymorphism (8.15%). A comparison of the taxa revealed one (T. flavescens, G. ulmifolia, C. speciosa, P. elipticum, G. herbaceum, H. syriacus and S. alba), two (C. olitorius and G. pondoensis), three (C. pentandra), four (P. acerifloium) and five (B. ceiba) specific bands, while the remaining examined taxa lacked specific bands. These findings are in agreement with those of Badrkhani et al. (2014), who reported that the SRAP technique is powerful for identifying genetic distance among species of Malvaceae s.l. and could be explained by the detection of polymorphisms in coding regions that are conserved among closely related taxa. Generally, both ISSR and SRAP are valuable as distinctive techniques for identifying Malvaceae s.l. taxa (Ghafoor & Hamarashid, 2022; Meerza et al., 2023). Both techniques achieve high PIC values (> 0.5), which is attributed to their ability to serve as a distinctive identification marker (Badrakhani et al., 2014). In comparison to the two DNA techniques, SRAP analysis yielded more MR than ISSR which indicated the efficiency of SRAP because of its greater ratio of the total number of bands. The dendrograms obtained by ISSR and SRAP are noninformative and unclear enough to show the positioning of Malvaceae s.l. species. The species are mixed in different clades that do not follow any of the proposed systems of classification of Malvaceae. Several factors make the ITS region valuable for use in phylogenetic analyses (Álvarez, & Wendel, 2003). First, the ITS region is highly repeated in plant nuclear genomes, along with other components of the nrDNA multigene family, including a highly variable region between the ribosomal repeats, the intergenic spacer. The high copy number of the nrDNA repeat facilitates the amplification and sequencing of the nrDNA. Second, the nrDNA multigene family has undergone rapid concerted evolution (Baldwin et al., 1995). This property of the ITS region is most important from a phylogenetic standpoint and promotes the accurate reconstruction of species relationships by sequencing (Slotta, 2000). ITS sequencing clearly distinguished three tribes: Gossypie (705-755bp), Hibiscie (727-735bp) and Malvie (677-714bp). This conclusion is supported by Takhtajan (2009), Reveal (2012) and APG (2016). In phylogenetic analyses based on the sequencing of the ITS region, E. nitentifolius (Elaeocarpaceae) was used as an outgroup. It was considered to be closely related to the core Malvales (Cronquist, 1988; Judd & Manchester, 1997). The obtained phylogenetic tree based on ITS sequencing using PAUP software attained a relatively high consistency index (CI) of 0.671 as an assessment of the strength of the phylogenetic signal. Farris (1989a) determines the value of '1' for a perfect fit to the value '0' for the poorest fit. Sanderson & Hufford (1996) mentioned CI as a parameter of the goodness of fit of a dataset to a hierarchical tree structure. Moreover, the homoplasy index (HI) is relatively low (0.329), which indicates low homoplasy; i.e., the similarity between species is attributed to common ancestry and is a result of divergent evolution (Cvetković et al., 2021). For a more reliable construction of the phylogenetic tree, the ratio of transversions to transitions (Ti/Tv) was determined, which ranged from 0.67 to 3.64 in the studied taxa. Taxa with a greater number of transversions (lower Ti/Tv values) would be older, diverging early in the history of evolution (Saha et al., 2013). The obtained phylogenetic tree distinguished three clades (A, B and C). Clade A represents the outgroup (E. nitentifolius), while Clades B and C represent Byttnerina and Malvadendrina, respectively. The subfamily Grewioideae (Tiliaceae), which is represented by *C. olitorious*, is considered the most primitive taxon (Edlin, 1935; Cronquist, 1981, 1988; Takhtajan, 1980, 1997; Thorne, 1992, 2000) and treats Tiliaceae as the most primitive family in core Malvales. This is supported by the low mean value of Ti/Tv (0.82), which implies the primitiveness of this subfamily. Cvetković et al. (2021) placed Grewioideae in a separate clade based on the plastome dataset. On the other hand, Warming (1895) and Rao (1952) noted Sterculiaceae as the most primitive group. Jones & Good (2016), Johnson et al. (2019) and Strijk et al. (2020) mentioned that the ranking and phylogenetic relationships of a clade are crucial steps in evolutionary analyses of this complex group. Clade C assorts the Malvadendrina clade with three subfamilies: 1, 2 and 3 of Bombacoideae, Sterculioideae and Malvoideae, respectively. Bombacoideae and Malvoideae together form a well-supported clade, Malvatheca, as supported previously by many authors by molecular analysis (Alverson et al., 1998; Bayer et al., 1999; Nyffeler et al., 2005). The sequencing data treat Bombacoideae as a more primitive subfamily than Sterculiodeae, with an average Tv/Ti of 0.976. This finding contradicts the findings of Edlin (1935), Cronquist (1981, 1988), Takhtajan (1980, 1997), and Thorne (1992, 2000), who considered Sterculioideae (Sterculiaceae) the primitive subfamily. The phylogenetic data suggest the inclusion of Sterculioideae within Malvadendrina, this conclusion was previously remarked as an unclear opinion described by Wilkie et al. (2006) and Hernández-Gutiérrez & Magallon (2019). Malvoideae (Malvaceae s.s.) is by far the largest subfamily in Malvaceae s.l. (c. 1800 species). It acquired the highest average Tv/Ti (1.036), which was attributed to the advanced placement in the tree. This study was well supported by all the previous authors. The dendrogram of the ITS sequencing data revealed three tribes within Malvoideae: the Gossypie, Hibiscie and Malvie tribes. However, the phylogenetic tree discriminates four tribes: Abutilae, Gossypie, Hibiscie and Malvie. This finding agrees with the classical tribal system of Hutchinson (1967) and contradicts those of Schultze-Motel (1974), Takhtjan (2009) and the APG (2016). The tribe Abutilae (A. hirtum) was distinguished by the highest number of total and specific bands produced in ISSR, while in SRAP, it had a high percentage of polymorphisms. Phylogenetically, the present study suggested the tribal level of Abutilae. The study indicated that the use of ISSR and SRAP as two powerful distinctive molecular techniques especially SRAP was proven more efficient. Both techniques were more successful at accessing a natural classification, with special referrals to sequencing techniques. The present study disagrees with the view of the traditional four families included in the classical systems of classification, and it agrees with the APG IV system of the nine subfamilies classification within two clades. However, the infrastructures of those clades were unclear, especially with the limits between Sterculioideae and Dombeyoideae, as well as between Malvoideae and Bombacoideae. Additionally, most of the tribal systems for both Malvoideae and Bombacoideae were confirmed. Dedication: To Professor El-Sadek Laila, who passed away before we edited this work; God Bless you and thank you for all you have done. Acknowledgments: The authors appreciate the editorial and reviewers' comments for their valuable suggestions. Competing interests: No conflicts of interest have been declared. Authors' contributions: Conceptualization W. K. T.; Methodology N. H. A.: Formal analysis and investigation performed by A. M. H.; Data interpretation, Writing of the original draft preparation, critical revision and editing of the final version of the article prior to journal submission G. E. B. Prior advice L. M.
S. All the authors agreed with the published version of the manuscript. Ethics Approval: Not applicable. #### References - Álvarez, I., Wendel, J.F. (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29(3). 417-434. - Alverson, W.S., Karol, K.G., Baum, D.A., Chase, M.W., Swensen, S.M., McCourt R., et al. (1998) Circumscription of the Malvales and relationships to other rosidae: evidence from rbcL sequence data. *American Journal of Botany*, 85, 876-887. - APG I (1998) An ordinal classification for the families of flowering plants. *Annals of the Missouri Botanical Garden*, **85**, 531-553. - APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. *Botanical Journal of the Linnean Society*, **141**, 399-436. - APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. *Botanical Journal of the Linnean Society*, **161**(2), 105-121. - APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society*, **181**, 1-20. - Badrkhani, N., Rahmani, F., Larti, M. (2014) Evaluation of Genetic Diversity in *Alcea* (Malvaceae) Using SRAP Markers. *Botanical Sciences*, **92**(3), 433-439. - Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciechowski, M.F., Campbell, C.S., Donoghue, M.J. (1995) The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden, 82(2), 247-277. - Baum, D.A., William A.S., Nyffeler, R. (1998) A Durian by any other name: taxonomy and nomenclature of the core Malvales. *Harvard Papers in Botany*, **3**(2), 315-330. - Baum, D.A., Smith, S., Yen, A., Alverson, W.S., Nyffeler, R., Whitlock, B.A., et al. (2004) Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae s.l.) as inferred from plastid DNA sequences. *American Journal of Botany*, **91**(11), 1863-1871. - Bayer, C., Fay, M.F., Bruijn, A.Y., Savolainen, V., Morton, C.M., kubitzki K., et al. (1999) Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpb and rbcL DNA sequences. *Botanical Journal of the Linnean Society*, **129**(4), 267-303. - Besse, P. (2014) In "Molecular Plant Taxonomy, Methods and Protocols" MIMB, 1115. Springer Science, New York. https://link.springer.com/ book/10.1007/978-1-62703-767-9#about-this-book - Boulos, L. (1995) "*Flora of Egypt* checklist". Al Hadara Publishing, Cairo, 283p. - Boulos, L. (2009) "Flora of Egypt Checklist. Revised Annotated Edition". Al Hadara Publishing, Cairo, 283p. - Celka, Z., Szczecinska, M., Sawicki, J., Shevera, M.V. (2012) Molecular studies did not support the distinctiveness of *Malva alcea* and *M. excisa* (Malvaceae) in Central and Eastern Europe. *Biologia*, **67**, 1088-1098. - Chase, M.W., Douglas, E.S., Olmstead, R., Albert, V.A. (1993) Phylogenetics of seed plants an analysis of nucleotide sequences from the plastid gene rbcL. *Annals of the Missouri Botanical Garden*, **80**, 528-580. - Cronquist, A. (1981) In "An integrated system of classification of flowering plants". Angiosperms, 1262p., Columbia University Press. - Cronquist, A. (1988) In "The Evolution and Classification of Flowering Plants". The New York Botanical Garden, New York, 555p. - Cvetković, T., Areces-Berazain, F., Hinsinger, D.D., Thomas, D.C., Wieringa, J.J., Ganesan, S.K., et al. (2021) Phylogenomics resolves deep subfamilial relationships in Malvaceae *s.l.* G3 (Bethesda) 11 jkab136. https://doi.org/10.1093/g3journal/jkab136 - Dellaporta, S.L., Wood, J., Hicks, J.B. (1983) A plant DNA minipreparation: Version II. *Plant Molecular Biology Reporter*, **1**, 19-21. - De Riek, J., Clsyn, E. Everaert, I., Van Bockstaele, E. (2001) AFLP-based alternatives for the assessment of distinctiveness, uniformity and stability of sugar beet varieties. *Theoretical and Applied Genetics*, 103, 1254-1265. DOI: 10.1007/s001220100710 - Edlin, H.L. (1935) A critical revision of certain taxonomic groups of the Malvales. *New Phytol*, **34**, 1-20. - Farris, J.S. (1989 a) The retention index and the rescaled consistency index. *Cladistics*, **5**(4), 417-419. - Farris, J.S. (1989 b) The retention index and homoplasy excess. *Systematic Biology*, **38**(4), 406-407. - Ghafoor, B.S., Hamarashid, S.H. (2022) Genetic Diversity and Relationships Among Medicinal Species of Malva L. (Malvaceae) Based on Issr Markers. Bangladesh Journal of Plant Taxonomy, - 29(2), 193-202. - Hammer, O., Harper, D.A.T., Ryan, P.D. (2001) PAST Palynological Statistics Software package for education and Data analysis. *Palaeontologia Electronica*, **4**(1), art. 4: 9p. http://paleo-electronica. org/2001 1/past/issue1 01.htm - Hernández-Gutiérrez, R., Magallon, S. (2019) Data for The timing of Malvales evolution: incorporating its extensive fossil record to inform about lineage diversification. Mendeley Data V1. https://doi: 10.17632/2ftkfv8gdd.1 - Hutchinson, J. (1967) "The genera of Flowering Plants". (Angiospermoe). Vol. 2, Clarendon Press, Oxford. - Jaccard, P. (1908) Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences naturelles, 44, 223-270. - Johnson, M.G., Pokorny, L., Dodsworth, S., Botigue, L.R., Cowan, R.S., Devault, A., et al. (2019) A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. *Systematic Biology*, 68,594-606. - Jones, M.R., Good, J.M. (2016) Detecting selection in natural populations: making sense of genome scans and toward alternative solutions, targeted capture in evolutionary and ecological genomics. *Molecular Ecology*, **2**,185-202. - Judd, W.S., Manchester, R.S. (1997) Circumscription of Malvaceae (Malvales) as determined by a preliminary cladistic analysis of morphological, anatomical, palynological, and chemical characters. *Brittonia*, **49**(3), 384-405. - Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F., Donoghue, M.J. (2008) "Plant Systematics: A Phylogenetic Approach". Sinauer Associates, Sunderland, Massachusetts. 3rd ed., 611p. https://doi.org/10.1111/j.1096-0031.2008.00212.x - Kew Science. (2021) "Plants of the World Online". Royal Botanic Gardens, Kew, UK. http://www.plantsoftheworldonline.org/ - Kubitzki, K. (2003) "The Families and Genera of Vascular Plants". pp 225-311, Berlin: Springer-Verlag. - Kubitzki, K., Chase, M.W. (2003) Introduction to Malvales. In. "The Families and Genera of Vascular Plants. Flowering Plants. Dicotyledons: Malvales, Capparales and Nonbetalain Caryophyllales" Kubitzki, K. & Bayer, C. (Eds.), 5, pp. 12-17. Berlin, Germany: Springer-Verlag. - Li, G., Quiros, C.F. (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in *Brassica*. *Theoretical and Applied Genetics*, **103**, 455-461. - Linnaeus, C. (1753) "Species Plantarum. Holmiae". By Laurentius Salvius, Sweden, 1200p. - Meerza, C., Muhealdin, B.S., Hamarashid, S.H., Qadir, S.A., Juan, Y. (2023) Delimiting species using DNA and morphological variation in some Alcea (Malvaceae) species based on SRAP markers. *Caryologia*, **75**(4). DOI: 10.36253/caryologia-1629 - Nyffeler, R., Bayer, C., Alverson, W.S., Yen, A., Whitlock, B.A., Chase, M.W., et al. (2005) Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences. Organisms Diversity & Evolution, 5(2), 109-123. - Péchon, T.L., Gigord, L.D.B. (2014) On the relevance of molecular tools for taxonomic revision in Malvales, Malvaceae *s.l.*, and Dombeyoideae. *Methods in Molecular Biololgy*, **1115**, 337-63. - Powell, W., Morgante, M., Andre, C., Hanafey, M., Voges, J., Tingey, S., et al. (1996) A comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. *Molecular Breeding*, **2**, 225-230. - Prevost, A., Wilkinson, M.J. (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98, 107-112. - Rao, C.V. (1952) Floral anatomy of some Malvales and its bearing on the affinities of families included in the order. *Journal of Indian Botanical Society*, 31,171-203. - Reveal, J.L. (2012) An outline of a classification scheme for extant flowering plants. *Phytoneuron*, **37**, 1-221. - Saha, J., Gupta, K., Gupta, B. (2013) Phylogenetic analyses and evolutionary relationships of Saraca asoca with their allied taxa (Tribe-Detarieae) based on the chloroplast matK gene. *Journal of Plant Biochemistry and Biotechnology*, **24**, 65-74. - Sanderson, M.J., Hufford, L. (1996) Homoplasy. The recurrence of similarity in evolution. Published by: American Society of Ichthyologists and Herpetologists (ASIH). *Copeia*, 2, 472-474. - Schultze-Motel, W. (1974) In: "A. Engler's "Syllabus der Pflanzenfamilian", H Melchior (Ed.). 12th ed, Gebrüder Borntraeger Verlag, Berlin. - Shamso, E.M., Khattab, A.A. (2016) Phenetic relationship between Malvaceae s.s. and its related families. *Taeckholmia*, **36**, 115-135. - Simpson, M.G. (2010) "*Plant Systematics*". Burlington: Elsevier Science, 752p. - Slotta, T.A.B. (2000) Phylogenetic Analysis of Iliamna (Malvaceae) Using the Internal Transcribed Spacer Region. *Ph.D. Dissertation*, Virginia Polytechnic Institute and State University, USA. - Sorkheh, K., Shiran, B., Gradziel, T.M., Epperson, B.K., Martinez-Gomez, P., Asadi, E. (2007) Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. *Euphytica*, **156**, 327-344. - Strijk, J.S., Binh, H.T., Ngoc, N.V., Pereira, J.T., Slik, J.F.
(2020) Museomics for reconstructing historical floristic exchanges: divergence of stone oaks across Wallaceae. *PLoS One*, **15**, e0232936. - Swofford, D.L. (2002) PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), version 4.0b10. Sinauer, Sunderland. DOI: 10.1111/j.0014-3820.2002.tb00191.x - Taeckholm, V. (1974) "Students' flora of Egypt", (2nd ed), Cairo University, Egypt, 888p. - Takhtajan, A. (1980) Classification of Flowering Plants Author(s): Hollis G. Bedell and James L. Reveal Source. *Taxon*, **31**, 211-232. - Takhtajan, A. (1997) Diversity and Classification of Flowering Plants. New York, NY: Columbia - University Press, 643. Brittonia, 50, 191-192. - Takhtajan, A. (2009) Diversity and Classification of Flowering Plants. New York, NY: Springer Science & Business Media. https://doi: 10.1007/978-1-4020-9609-9 - Tamura, K., Stecher, G., Kumar, S. (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022-3027. - Tate, J.A., Aguilar, J.F., Wagstaff, S.J., La Duke, J.C., Slotta B.T.A., Simpson, B.B. (2005) Phylogenetic relationships within the tribe Malveae (Malvaceae, subfamily Malvoideae) as inferred from ITS sequence data. *American Journal of Botany*, 92(4), 584-602. - Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. (1997) The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research*, **25**, 4876-4882. - Thorne, R. (1992) Classification and geography of the flowering plants. *Botanical Review*, **58**(3), 225-348. - Thorne, R. (2000) The classification and geography of the flowering plants: dicotyledons of the class Angiospermae. *Botanical Review*, **66**, 441-647. - Vanijajiva, O. (2012) Assessment of genetic diversity and relationships in pineapple cultivars from Thailand using ISSR marker. *Journal of Agricultural Technology*, **8**(5), 1829-1838. - Warming, E. (1895) "Handbook of Systematic Botany" London, 620p. - Weising, K., Nyborm, H., Wolf, K., Khal, G. (2006) DNA fingerprinting in plants. Principles, methods and applications. *Biologia plantarum*, **50**, 799. https://doi.org/10.1201/9781420040043 - Wilkie, P., Clark, A., Pennington, R.T., Cheek, M., Bayer, C., Wilcock, C.C. (2006) Phylogenetic relationships within the subfamily Sterculioideae (Malvaceae/Sterculiaceae-Sterculieae) using the chloroplast gene ndhF. *Systematic Botany*, **31**, 160-170. ## التقنيات الجزيئية للتأكد من الاستراتيجيات الوراثية في بعض أصناف I.s eaecavlaM. غادة السيد البدن(1)، ناصر حسين عباس(2)، وفاء كمال طايع(1)، أحمد محمد حسن(1)، ليلي محمد الصادق(1) (1)قسم النبات والميكروبيولوجي- كلية العلوم- جامعة الإسكندرية- الإسكندرية- مصر، (2) معهد بحوث الهندسة الوراثية والتكنولوجيا الحيوية- جامعة مدينة السادات- مصر. لقد تعرضت عائلة Malvaceae تقليديًا للعديد من الأساليب التصنيفية فيما يتعلق بعلاقاتها وأقسامها التصنيفية. ومع التقدم السريع في الأساليب المعتمدة على تفاعل البوليميراز المتسلسل ومعلومات تسلسل الحمض النووي، أصبح لدى علماء التصنيف الآن فرصة التحول من أنظمة التصنيف التقليدية إلى أنظمة أحدث. قدمت الدراسات الجزيئية للأصناف Malvaceous آراء جديدة حول تجمع هذه الأصناف وتطورها. تضمن هذا العمل تحليلات جزيئية لثلاثة وعشرين نوعًا من أنواع Malvaceae. تم استخدام ثلاث تقنيات جزيئية، وهي تكرار التسلسل البسيط (ISSR)، وتعدد الأشكال المضخم المرتبط بالتسلسل (SRAP)، والمباعد الداخلي المكتوب (ITS)، لدراسة العلاقات بين الأصناف المدروسة. تم بناء علاقات التطور الوراثي باستخدام تحليل الوراثة التطورية الجزيئية والتحليل الوراثي باستخدام برنامج MEGA) Parsimony وPAUP). كشفت الوراثة التطورية الجزيئية والتحليل الوراثي باستخدام برنامج (SRAP) بين الأصناف. تدعم هذه البيانات وجهة النظر التصنيفية لعائلات ISSR 78) الفرعية في نظام Angiosperm Phylogeny النياتات (أنظمة APG).