The world is currently facing a challenge when it comes to overcome the COVID-19 pandemic. Till now, no vaccine has been succeeded in providing the human body with the required immunization against this virus. However, there is a gleam of hope in using the cyanophycean filamentous species *Spirulina* as a dietary supplement previously approved by NASA for astronauts on space missions (Tadros, 1988). It has the potential of clinical applications to treat many diseases, and it has been used as anticancer, antiviral, and anti-allergic (Karkos et al., 2011). The advantage of introducing *Spirulina* in medicinal applications has been proven in many medical cases, that it was used to defeat many viruses such as influenza A (H1N1) virus (Pugh et al., 2015; Chen et al., 2016), chronic hepatitis C virus (Yakoot & Salem, 2012; Elshanshory et al., 2020), HIV (Ngo-Matip et al., 2015), enterovirus 71-induced apoptosis (Shih et al., 2003), herpes simplex virus (HSV) type (Hayashi et al., 1996a, b; Mader et al., 2016).

Several research studies recommended that *Spirulina* can be a potential alternate therapy against virus diseases due to the possible synergistic effect of many bioactive compounds present in the whole cell or the extract (Zhou et al., 2020). The viruses, especially coronavirus, are resistant to chemical drugs, and there is a must for researchers to explore alternative biological compounds extracted from some algae, including cyanophytes, or other natural products that can act as protective agents against viruses. *Spirulina* has many healing properties and positive effects on the body. In addition to its detoxifying effect, it also has many benefits for gut health, blood pressure, blood cholesterol levels, hair, skin, antioxidant, and anticancer (Shao et al., 2019; Singh et al., 2020). *Spirulina* also contains a high content of nutrients, a powerful antioxidant, and anti-inflammatory properties. It includes vitamins B1, B2, and B3, iron, magnesium, and potassium. Several bioactive compounds derived from *Spirulina* have been recognized, including proteins, essential amino acids (EAAs), carbohydrates, essential fatty acids, minerals, vitamins, pigments, and gamma linolenic acid with their remarkable antimicrobial and antivirus (El-Baz et al., 2013; El-Sheekh et al., 2014a; Daoud & Soliman, 2015), improving human body functions (Ramakrishnan, 2013). The United Nations confirmed that malnutrition and lack of key vitamins and minerals lead to impairment of physical and intellectual development (UNICEF, 2012). Therefore, the dual role of *Spirulina* as a food supplement and therapeutics against virus infection is important (El-Sheekh et al., 2014b).

Many countries and labs are currently looking for a COVID-19 vaccine but have yet to explore it. Many species of *Spirulina* contain significant active compounds such as sulfated polysaccharides, phenols, phycobiliproteins, and calcium spirulan with inhibition activity against replication of viruses, especially influenza A (H1N1), HCV, and HIV viral infection. As there is no vaccine was approved against COVID-19, the potential of using *Spirulina* as antivirus and an immune agent has been tested for many viruses, and this encourages using the *Spirulina* as a whole amount or its extract for immunization against COVID-19, the causative pathogen of Coronavirus disease. The present article discusses some of the important studies on the therapeutic antiviral activities of the cyanobacterium *Spirulina platensis*.

Keywords: Calcium spirulan, COVID-19, *Spirulina*, Sulphated polysaccharides.
Emerging or re-emerging of pandemic viral diseases is the most critical situation human could face. During the last decades, the number of antiviral products that have been approved for clinical trials has been jumped tremendously from 5 to more than 30 drugs (Ismail et al., 2020; Pereira & Critchley, 2020). Many studies have confirmed the antiviral activity of *Spirulina* extracts (Table 1). In that context, a sulfated polysaccharide, namely, calcium spirulan (Ca-SP), was extracted for the first time from *S. platensis* found to have antiviral bioactivity (Hayashi et al., 1996a). Several studies showed that using calcium spirulan (Ca-SP) could inhibit the replication of several enveloped viruses, including influenza A virus, Herpes simplex virus, human cytomegalovirus, measles virus, mumps virus, and HIV-1 (Hayashi et al., 1996a). Hayashi et al. (1996b) confirmed the selective ability of (Ca-SP) to inhibit the penetration of viral molecules into host cells. Therefore, (Ca-SP) has been introduced to the medical market as a good antiviral candidate due to its low anticoagulant activity, long half-life in the blood, also it proved to be dose-dependent, without any stimulation of viral replication at low concentrations. Rahman et al. (2006) compared two antiviral candidate products, cidofovir, and *S. platensis* extract, using infected pathogen-free *Litopenaeus vannamei* juveniles. Substantially hindered mortality in white spot syndrome virus (WSSV) infected shrimp treated with cidofovir, whereas shrimp supplied with *Spirulina* showed delayed clinical signs for 12hrs; however, the cumulative mortality at the end of the experiment has not been affected. *Spirulina* has been claimed to have the potential to increase the body’s interferon type 1 response defeating RNA viruses, including the flu and the coronavirus (McCarty & DiNicolantonio, 2020). A pigment fraction, namely phycocyanobilin (PCB) mimics bilirubin extracted from *Spirulina*, has been found to mimic NAPDH oxidase inhibiting activity, which in turn blocks the key reproduction mechanism of RNA viruses human body (McCarty, 2007; Zheng et al., 2013; McCarty & DiNicolantonio, 2020). PCB, a biliverdin metabolite, was shown to mimic the NAPDH oxidase inhibiting the activity of unconjugated bilirubin, likely because of its conversion to phycocyanorubin, which is structurally comparable to bilirubin (Romay et al., 2003; Zheng et al., 2013). Thus, this could explain the antioxidant and anti-inflammatory effects recorded when phycocyanin or PCB are administered in rodent models of human pathology (Romay et al., 2003; McCarty & DiNicolantonio, 2020).

TABLE 1. Antiviral activity of specific compounds from cyanobacteria, showing the wide range of antiviral activity of *Spirulina* sp.

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Compounds</th>
<th>Virus</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nostoc ellipsosporum</td>
<td>Cyanovirin-N Da-1</td>
<td>Human immunodeficiency virus HIV-1 and HIV-2 and Simian Immunodeficiency Virus SIV</td>
<td>(Boyd et al., 1996) (Pereira et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>replication; RNA-dependent DNA polymerase activity of the viral RT</td>
<td>(Zainuddin et al., 2002)</td>
</tr>
<tr>
<td>Calothrix gracilis</td>
<td>Methanol extract</td>
<td>Influenza A virus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Herpes Simplex HSV-1 replication; Measles replication; Mumps replication; Influenza replication;</td>
<td></td>
</tr>
<tr>
<td>Arthrospira platensis</td>
<td>Calcium spirulan</td>
<td>Po lio replication; Coxsackie replication; HIV-1 replication; Human Cytomegalovirus HCMV replication.</td>
<td>(Hayashi et al., 1996b)</td>
</tr>
<tr>
<td>Spirulina maxima</td>
<td>Methanol extract</td>
<td>Herpes simplex virus type 2</td>
<td>(Corona et al., 2002)</td>
</tr>
<tr>
<td></td>
<td>Spirulina platensis</td>
<td>Herpes simplex (HSV-1)</td>
<td>(El-Sheekh et al., 2020)</td>
</tr>
<tr>
<td>Arthrospira platensis</td>
<td>Methanol extracts</td>
<td>Coxsackievirus B3 (CVB3) and rotavirus (RV)</td>
<td>(Deyab et al., 2020)</td>
</tr>
<tr>
<td>Spirulina sp.</td>
<td>Spirulain</td>
<td>HIV-1 and HIV-2 (inhibit reverse transcriptase) HSV, influenza</td>
<td>(Singh et al., 2011)</td>
</tr>
<tr>
<td>Spirulina platensis</td>
<td>Allophycocyanin</td>
<td>Enterovirus 71</td>
<td>(Shih et al., 2003)</td>
</tr>
<tr>
<td>Spirulina platensis</td>
<td>Water-soluble extract</td>
<td>Herpes Simplex HSV-1</td>
<td>(Hayashi et al., 1993)</td>
</tr>
</tbody>
</table>
Considering the results obtained from other studies on other viral diseases, including coronaviruses, it could be cautiously suggested that Spirulina extract could represent a gleam of hope as a therapeutic agent for COVID-19, which for sure needs further and extended clinical investigation.

Compliance with Ethical Standards: No funding received for this work.

Conflict of Interest: Authors declare that there is no conflict of interest.

Authors contribution: Mostafa El-Sheekh: Conceptualization, Investigation, Methodology, Validation, Writing - original draft. Abd El-Fatah Abomohra: Data curation, Writing - review & edit.

Ethical approval: This article does not contain any studies with animals performed by any of the authors.

References

Egypt. J. Bot. 60, No. 3 (2020)

Cyanobacteria a potential source of antiviral substances against influenza virus. *Medical Microbiology and Immunology, 191*, 181-182.

THE THERAPEUTIC POTENTIAL OF SPIRULINA TO COMBAT COVID 19 INFECTION

THE THERAPEUTIC POTENTIAL OF SPIRULINA TO COMBAT COVID 19 INFECTION

The therapeutic potential of *Spirulina* to combat COVID 19 infection. *Egypt. J. Bot.*, **60**, No. 3 (2020)

Cyanobacteria are a potential source of antiviral substances against influenza virus. *Medical Microbiology and Immunology, 191*, 181-182.

The therapeutic potential of *Spirulina* to combat COVID 19 infection. *Egypt. J. Bot.*, **60**, No. 3 (2020)

Cyanobacteria are a potential source of antiviral substances against influenza virus. *Medical Microbiology and Immunology, 191*, 181-182.

THE THERAPEUTIC POTENTIAL OF SPIRULINA TO COMBAT COVID 19 INFECTION

The therapeutic potential of *Spirulina* to combat COVID 19 infection. *Egypt. J. Bot.*, **60**, No. 3 (2020)

Cyanobacteria are a potential source of antiviral substances against influenza virus. *Medical Microbiology and Immunology, 191*, 181-182.
