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Over the past years, there has been a growing interest in studying the effects of fungal respiratory 
diseases by the predominant species identified in respiratory cultures from this genus Aspergillus. 
Machine learning autonomously identifies the five distinct species of Aspergillus. We selected a 
diverse array to show a wide array of color combinations, dimensions, and configurations, which 
enhance the incorporation of diversity and intricacy in our research. The split was conducted in a 
random manner, allocating 70% of the data to the training set, 20% to the validation set, and 10% 
to the test set. The heterogeneity among various forms of Aspergillus was assessed based on the 
photos. The photographs were taken against two distinct backgrounds: one in copper and the other 
in grey color. Multiple elevations and shooting angles were taken into consideration. The 
crowdedness of the Aspergillus also varied randomly per image. We utilized a smartphone camera 
boasting a resolution of 32 megapixels. A grand total of 337 photographs were captured, including 
five Aspergillus species that were appropriately identified. CSPDarknet53 acts as the fundamental 
structure for YOLOv8, which is constructed on top of DenseNet. The YOLOv8 model attained a mean 
average precision (mAP) of 90%. YOLOv8 has a significant advantage in terms of its speed in 
detecting objects, making it suitable for real-time identification situations that demand both high 
accuracy and few false positives. The results demonstrated that YOLOv8 exhibited outstanding 
precision and detection performance. This technique is highly effective and efficient in detecting 
many species of Aspergillus.  
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INTRODUCTION 

Fungi represents the third most varied category of 
eukaryotic organisms on Earth, with around 140,000 
identified species, while estimates range from 
700,000 to 12 million. Fungi inhabits terrestrial, 
freshwater, and marine habitats. In these 
environments, these organisms contribute towards 
significant diseases for humans, animals, and plants, 
as well as acting as crucial agents for carbon and 
nutrient recycling (Oliveira and Azevedo, 2022). 

Aspergillus comprises more than 340 officially 
acknowledged species, categorized according to their 
physical characteristics, biological functions, and 
evolutionary qualities. These classifications have 
considerable significance in diverse areas like 
agricultural production, biotechnology, 
environmental science, and human health. 
Aspergillus fumigatus is both a potentially deadly 
human infection and a significant allergen. It has 
attracted attention due to its connection with allergic 
reactions and invasive disorders (Qi et al., 2024). 
Aspergillus species commonly cause invasive fungal 
infections in patients with weak immune systems. 
They are also linked to allergic bronchopulmonary 
illnesses, mycotic keratitis, otomycosis, and nasal 
sinusitis. There are a minimum of 30 Aspergillus 
species that have been linked to illnesses in humans 
(Diba et al., 2007).  

Aspergillus spp. spores are primarily disseminated 
through the air. Consequently, human airways are the 
primary organ at risk for Aspergillus infection, 
particularly in people with preexisting sinus or 
pulmonary conditions. Individuals with compromised 
natural immunity (e.g., inability to expel secretions) 
or cellular immunity (e.g., neutropenia, diminished T 
cell function, and immunosuppressive medications) 
are more vulnerable and may experience fast 
advancing diseases that might lead to grave 
consequences (Dobiáš et al., 2023). Fungi are 
essential constituents of soil microbiota and play a 
key role in soil ecosystem functioning, especially in 
forest and agricultural soils. Aspergillus has a role in 
the cycling of major nutrients, especially its potential 
role in the decomposition of complex organic 
molecules (Rakiya et al., 2024). Vegetables are vital 
preventative foods that promote health maintenance 
and illness prevention; yet, certain fungus, including 
Penicillium spp., Aspergillus spp., and Fusarium spp., 
can proliferate on vegetables and contaminate them 
(Al-Ameri, 2024). The Aspergillus genus is highly 
significant among filamentous fungal genera. 
Aspergillus species are utilized in the fermentation 
industry, but they can also cause secondary roots in 
plants and food due to the potential buildup of 
mycotoxins. While Aspergillus species are not 
typically regarded as a primary cause of plant disease, 
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they do contribute to multiple problems in different 
plants and plant products (Perrone et al., 2007). 

Enhancing the identification of physical features of 
opportunistic fungi in stained samples through 
microscopic analysis, optimizing the growth rate and 
conidia production of Aspergillus spp. in laboratory 
cultures, and identifying unusual variations of 
common aspergilli can enhance the laboratory's 
ability to provide quick diagnoses (McClenny, 2005). 
According to a 2003 survey conducted by the 
American Society for Microbiology (ASM) on the 
identification of microbial pathogens, 89% of 
laboratories that perform morphology-based 
mycological examinations use serologic tests, while 
fewer than 5% use molecular tests. The survey 
specifically focused on the isolation and phenotypic 
identification of common clinical Aspergillus spp. 
Isolates are comparatively faster to trigger intricate 
host diseases. The applications in microbiology are 
rapidly developing, and the machine learning 
methods commonly employed in basic and clinical 
research encompass a wide range of techniques, 
including classification, regression, clustering, and 
dimensionality reduction (Asnicar et al., 2024). 
Applying machine learning algorithms to spam 
filtering focuses on textual and image-based 
approaches instead of considering spam filtering as a 
standard classification problem (Guzella and 
Caminhas, 2009). Machine learning approaches play 
an essential role in analyzing spectrum data for 
spectroscopy and imaging systems. Deep learning is 
currently a widely discussed subject in the field of 
artificial intelligence, and convolutional neural 
networks (CNNs) have emerged as one of the most 
often used and favored models within the realm of 
deep learning. Traditionally, deep learning 
techniques have been employed for the analysis of 
two-dimensional images (Qiu et al., 2018). The 
primary method utilized for identifying and displaying 
signs of plant diseases from color photographs was 
computer vision. The features retrieved from these 
images were then used as inputs for other classifiers, 
including the Support Vector Machine Classifier 
(Camargo and Smith, 2009). Machine learning 
involves the direct examination of digital 
photographs or scans of groupings of things. By 
incorporating pixel brightness and color values as 
variables in morphometric analysis, the traditional 
approach of geometric morphometrics (GM) 
becomes more effective and allows for an analysis of 
all points that make up the object that is being 
investigated. Matrices are constructed and group 

partitioning is performed using logistic regression. 
Geometric morphometrics and form analysis 
algorithms are currently advised for conducting 
several analyses on a single collection of objects and 
generating the corresponding findings, 
notwithstanding some oversimplifications. Precise 
information regarding the color distribution, size, and 
textural measurements of the fungal colony can be 
extracted from a digital photograph (MacLeod, 2017). 
From a clinical perspective, it may be required to 
identify unknown Aspergillus isolates to the species 
level because different species exhibit varying 
susceptibilities to diverse antifungal medications 
(Balajee et al., 2007). 

MATERIALS AND METHODS 
Fungal Isolation, Growth Media, and Culture 
Conditions 

The current investigation involved the isolation of 
fungal species from an agricultural soil in Giza, Egypt, 
utilizing the soil dilution plate method as described by 
Johnson et al. (1960). Inoculum from soil samples was 
applied onto Czapek-Dox agar (CZA) medium, which 
consisted of the following components per liter: 20 g 
of sucrose, 2 g of NaNO3, 1 g of K2HPO4, 0.5 g of KCl, 
0.5 g of MgSO4.7H2O, 0.01 g of FeSO4.7H2O, and 15 g 
of agar. After sterilization and cooling, the previously 
filtered streptomycin solution (30 mg/mL) was added 
to the medium mentioned above. The fungal colonies 
were purified using the streak plate method. 
Subsequently, the identification of the specimens was 
conducted by assessing their morphological and 
microscopic attributes, such as color, texture of 
mycelia, and spore production pattern. This 
assessment was carried out following the methods 
described by Gilman (1957), Raper (1965), 
Moubasher (1993), and Watanabe (2002). The fungal 
species were cultivated on slants with CZA medium at 
a temperature of 28 degrees Celsius for a duration of 
4 days. The spores from each strain were collected 
and preserved at a temperature of 4oC in a sterile 
solution of spore suspension buffer, which consisted 
of 0.9% (w/v) NaCl and 1% (v/v) Tween 80(Khalil et al., 
2019). We selected five distinct species of Aspergillus 
fungus as the subjects for our investigation. These 
selections exhibit varying sizes and shapes to 
introduce diversity and intricacy into our research. 
The study used a dataset of images of the Aspergillus 
fungus. Since this dataset is not publicly available like 
other datasets used in machine learning and 
computer vision research (such as ImageNet, PASCAL 
VOC, and COCO), it was manually collected, 
annotated, and then divided randomly into three sub-
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datasets: train, validation, and test (predictions). The 
ratio of images in each sub-dataset is 80%, 10%, and 
10%, respectively. 

Molecular Identification of Fungal Isolates 

The detection of Aspergillus terreus, Aspergillus 
fumigatus, Aspergillus flavus, Aspergillus 
welwitschiae, and Aspergillus austwickii was 
additionally verified by analyzing the nuclear 
ribosomal DNA internal transcribed spacer (ITS) 
sequence. The genomic DNA was acquired via the 
methodology outlined in the GeneJet Plant genomic 
DNA purification Kit (Thermo) no. K0791, which may 
be found at http://www.thermoscientificbio.com. 
The genetic sequence includes the 18S ribosomal RNA 
gene, the internal transcribed spacer 1, the 5.8S 
ribosomal RNA gene, the internal transcribed spacer 
2, and the 28S ribosomal RNA gene.  The target gene 
is the 18S ribosomal RNA gene, which includes the 
internal transcribed spacer 1, the 5.8S ribosomal RNA 
gene, the internal transcribed spacer 2, and the 28S 
ribosomal RNA gene. The length of the amplified gene 
is 564 base pairs (bp), with sequencer reading length 
of 324. The primers used are ITS1 with sequence (CTT 
GGT CAT TTA GAG GAA GTA A) and ITS4 with 
sequence (TCC TCC GCT TAT TGA TATGC).  

The obtained sequence was inputted into the BLAST 
algorithm of the National Center of Biological 
Information (NCBI) database to retrieve closely 
related phylogenetic sequences. A phylogenetic tree 
was generated using the BLAST algorithm. The 
acquired sequence was then uploaded to the 
GenBank database of the National Center for 
Biotechnological Information (NCBI). Each isolate was 
assigned a strain identifier and an accession number. 
A phylogenetic tree was generated via MEGA 11 
software. The acquired sequence was subsequently 
uploaded to the GenBank database of the National 
Centre for Biotechnology Information (NCBI). Each 
isolate was assigned a strain identifier and an 
accession number. 

Image Collection 

The images for our dataset were gathered through 
manual collection. The photos were examined to 
assess the variety among several species of fungi. The 
study focuses on five specific types of Aspergillus 
fungus: Aspergillus terreus, Aspergillus fumigatus, 
Aspergillus flavus, Aspergillus welwitschiae, and 
Aspergillus austwickii. The images were taken against 
two distinct backgrounds: one of copper and the 
other of grey color. Alternative elevations and 

shooting perspectives were considered. The density 
of Aspergillus also exhibited random variation in each 
photograph. The imaging tool employed is a 
smartphone camera boasting a resolution of 32 
megapixels. A total of 337 pictures were acquired, 
which included 5 labeled objects. The dataset 
comprised photos with diverse backgrounds, heights, 
angles, crowdedness, layouts, and combinations, as 
depicted in Figure 1. 

Object Annotation 

Object detection, often called object recognition, is 
the exact identification and localization of an object 
within an image. A tool for object annotation was 
utilized to assign labels to the collected photographs. 
The LabelImg tool, created by Tzutalin and accessible 
at https://github.com/tzutalin/labelImg, was 
selected from a collection of often utilized utilities 
including LabelImg, Imglab, LabelMe, Labelbox, and 
RectLabel. The image annotations were saved in two 
file formats: .txt, which is the input format for YOLO, 
and .xml, which is compatible with the prior to being 
input into the models; all photos in our dataset 
underwent preprocessing. The primary preprocessing 
step involved adjusting the input image resolution to 
ensure compatibility with our models, hence 
preventing memory issues, slow processing speed, 
and reduced accuracy. PASCAL VOC dataset can be 
easily converted into TF records. 

Data Standardization 

We applied the Darknet deep learning framework to 
create the YOLOv8 model. After being prepared, the 
photos and annotations data were fed into the 
model. Subsequently, the dataset was divided into 
train, validation, and test sets using random selection, 
with proportions of 70%, 20%, and 10%, respectively. 

Preprocessing and Network Models 

Every object detector has a central support, cervical 
region, and sensing component. Initially, the input 
image is passed via the backbone, which utilizes a 
convolutional neural network to condense the 
characteristics. Contrary to picture classification, 
object detection backbones do not serve as the last 
component of the network. Predictions cannot be 
solely based on them; localization must be combined 
with classification. Localization involves the process 
of determining the precise location of an item in an 
image by drawing numerous bounding boxes. This 
requires the feature layers of the convolutional 
backbone to be combined and coordinated with one 
other.  

https://github.com/tzutalin/labelImg
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Figure 1. The different samples used in the dataset. 

 
The fusion of primary structural layers occurs in the 
cervical region, followed by the identification process 
in the cranial region. It is beneficial to categorize 
object detectors into two groups: one-stage 
detectors and two-stage detectors, as illustrated in 
Bochkovskiy et al. (2020). Two-stage detectors 
separate the process of object localization and 
classification for each bounding box, whereas one-
stage detectors do object localization and 
classification concurrently. 

 

YOLOv8 

The YOLO (You Only Look Once) series of models has 
gained renown in the field of computer vision. The 
success of YOLO can be attributed to its exceptional 
accuracy, despite its little model size. YOLO models 
may be trained using only one GPU, which makes it 
easily accessible to a diverse group of developers. 
Machine learning practitioners have the option to 
utilize it on inexpensive edge hardware or in the 
cloud. The computer vision community has actively 
supported and developed YOLO since its initial 
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release in 2015 by Joseph Redmond. During the initial 
stages (versions 1-4), YOLO was upheld in C code 
within a specialized deep learning framework known 
as Darknet, developed by Redmond. YOLO (versions 
1-4) has proven its efficiency beating other popular 
models like Faster R-CNN at accuracy and speed (Ouf, 
2023). Over the past two years, other models have 
emerged from the YOLOv5 PyTorch repository, such 
as Scaled-YOLOv4, YOLOR, and YOLOv7. Several 
PyTorch-based implementations of models, including 
YOLOX and YOLOv6, were developed in different 
parts of the world. Throughout their development, 
each YOLO model has introduced state-of-the-art 
(SOTA) techniques that consistently enhance the 
accuracy and efficiency of the model. Ultralytics 
conducted research on the latest state-of-the-art 
(SOTA) iteration of YOLO, known as YOLOv8, for a 
period of six months. YOLOv8 was released on 
January 10, 2023. The YOLOv8 model has high 
accuracy on the COCO dataset. As an illustration, the 
YOLOv8m model, namely the medium-sized model, 
attains a mean average precision (mAP) of 50.2% 
when evaluated on the COCO dataset. When 
compared to Roboflow 100, a dataset designed to 
assess model performance in several task-specific 
domains, YOLOv8 outperformed YOLOv5 by a 
significant margin. Further details regarding YOLOv8 
architecture is presented in Figure 2. Moreover, the 
developer-friendly functionalities of YOLOv8 are 
substantial. Unlike previous models that distribute 
tasks over multiple Python files for execution, YOLOv8 
simplifies model training by providing a Command 
Line Interface (CLI) that enhances intuitiveness. This 
is an additional feature of a Python package that 
offers a smoother development experience 
compared to previous versions.  

The Assessment Method 
Loss Function 

YOLOv8 utilizes advanced loss functions to optimize 
the model, which include the following: 

• CIoU loss during training: the accuracy of 
localization can be improved by using bounding 
box regression, which is expressed as box_loss. 

• DFL loss (Distribution Focal Loss): as correctly 
pointed out, the issue is specifically referred to as 
dfl_loss. It enhances the model's ability to more 
accurately predict item classifications. 

• VFL loss (Varifocal Loss): the value is not 
displayed independently but rather included 
within the cls_loss (class loss) in the training logs. 

The purpose of VFL is to mitigate disparities and 
ambiguities in classification jobs. 

Every loss component is crucial in refining the 
accuracy of the model, with each one specifically 
targeting a particular aspect of the detection task, 
such as localization and classification. The training 
logs indicate the performance of the model in several 
areas by displaying box loss, cls loss, and dfl loss. The 
objective throughout training is to minimize these 
losses to enhance the performance of the model (Wu 
et al., 2020). The loss function integrates the losses of 
classification and bounding box regression in the 
following manner: 

𝐿𝐿 = 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏 (1) 

𝐿𝐿({𝑝𝑝𝑖𝑖}, {𝑡𝑡𝑖𝑖}) = 1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

∑ 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖∗)𝑖𝑖 +
𝜆𝜆

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏
∑ 𝑝𝑝𝑖𝑖∗ .𝐿𝐿1𝑐𝑐𝑠𝑠𝑏𝑏𝑏𝑏𝑠𝑠ℎ(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖∗)𝑖𝑖    (2) 

In this context, "𝑖𝑖" represents the index of an anchor 
within a batch. "𝑝𝑝𝑖𝑖" represents the anticipated 
probability of anchor "𝑖𝑖" being an object. "𝑝𝑝𝑖𝑖∗" 
represents the ground truth label, which is a binary 
value indicating whether anchor "𝑖𝑖" is an object. 
When the anchor is a positive sample, "𝑝𝑝𝑖𝑖∗" is equal to 
1. When it is a negative sample, "𝑝𝑝𝑖𝑖∗" is equal to 0. The 
regression loss term is activated only when the 
anchor is positive. "𝑡𝑡𝑖𝑖" represents the predicted four 
parameterized coordinates of the positive sample 
anchor, while "𝑡𝑡𝑖𝑖∗" represents the ground truth 
coordinates of the positive sample anchor. The 
balancing parameter "𝜆𝜆" is used to weigh the 
classification loss "𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐" and the bounding box 
regression loss "𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏" so that both terms have 
roughly equal weight. The default value of "𝜆𝜆" is set 
to be approximately 10. "𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐" and "𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏" are 
normalization terms used to normalize the 
classification loss item "𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐" and the regression loss 
item "𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏," respectively. The log loss function, 
denoted as 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐, is used to measure the error in binary 
classification. It may also be applied to multiclass 
classification by converting it into a binary 
classification problem, where we forecast whether a 
sample belongs to the target class or not. The 𝐿𝐿1 
smooth loss refers to the smooth 𝐿𝐿1 loss. The 
classification loss function 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐  is a binary classifier 
that determines if an object is present or not. The 
formula for this classifier is as follows: 
𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖∗) =  −𝑝𝑝𝑖𝑖∗ log𝑝𝑝𝑖𝑖 − (1 − 𝑝𝑝𝑖𝑖∗) log(1 − 𝑝𝑝𝑖𝑖)   (3) 

The bounding box regression loss function 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏  is 
used to calculate the difference between the two 
transformations, and the formula is as follows: 

𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖∗) = 𝑅𝑅(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖∗)    (4) 
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Figure 2: YOLOv8 architecture, visualization made by GitHub user RangeKing. Source: https://blog.roboflow.com/whats-new-in-yolov8

 
where R function is defined as 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡ℎ𝐿𝐿1(𝜒𝜒) = � 0.5𝜒𝜒∗        , |𝜒𝜒| < 1
|𝜒𝜒|− 0.5      ,𝑆𝑆𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒   (5) 

Precision, Recall, and mAP 

The mAP is a widely used statistic for evaluating the 
performance of an object detection model. The topic 
encompasses two fundamental concepts: precision 
and recall. Precision, also referred to as the positive 
predicted value, is a measure for an item that 
quantifies the ratio of accurately predicted positive 

observations to the total number of expected positive 
observations. In other words, high precision indicates 
a low rate of false-positive predictions: 

𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑖𝑖𝑒𝑒𝑖𝑖𝑆𝑆𝑝𝑝 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (6) 

The precision and recall performance of the model 
can be changed by modifying the SoftMax  threshold 
in the final layer. Raising the threshold would result in 
a reduction of false positives (FP), hence increasing 
precision and decreasing recall. Similarly, to enhance 
memory, it is necessary to lower the frequency of 
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false negatives (FN), which would consequently lead 
to a reduction in precision. In object detection jobs, it 
is typically necessary for the precision to be high, 
meaning that the number of anticipated positives 
that are true positives (TP) should be maximized. 
Precision and recall are commonly employed metrics 
in conjunction with other measures, such as accuracy, 
which represents the proportion of properly 
predicted observations to the total number of 
observations:  

𝐴𝐴𝑝𝑝𝑝𝑝𝐴𝐴𝑒𝑒𝐴𝐴𝑝𝑝𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁+𝑇𝑇𝑁𝑁

  (8) 

The F1 score is a metric that combines precision and 
recall (Huang et al., 2015). It is a more informative 
measure than accuracy; however, it is not as 
straightforward to calculate. Accuracy is a valuable 
indicator, particularly when dealing with datasets 
that are symmetrical, meaning that the costs of false 
positives and false negatives are equivalent. The F1 
score considers both false positives and false 
negatives. If the costs associated with false positives 
and false negatives exhibit significant disparity, it is 
advisable to include both precision and recall metrics 
(Chinchor, 1992): 

𝐹𝐹1 − 𝑒𝑒𝑝𝑝𝑆𝑆𝑒𝑒𝑒𝑒 =  2 × ( 𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 ×  𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑏𝑏𝑝𝑝)
𝑅𝑅𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 + 𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑏𝑏𝑝𝑝

  (9) 

Intersection over Union (IoU) is a metric used to 
calculate the average precision (AP) for object 
detection. The Intersection over Union (IoU) is 
calculated by dividing the area of intersection 
between the predicted bounding box and the ground 
truth bounding box by the area of their union, as 
shown in the following equation: 

𝐼𝐼𝑆𝑆𝐼𝐼 =  𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 𝑂𝑂𝑂𝑂 𝑂𝑂𝑂𝑂𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟𝑝𝑝
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 𝑂𝑂𝑂𝑂 𝑈𝑈𝑝𝑝𝑖𝑖𝑏𝑏𝑝𝑝

   (10) 

The Intersection Over Union (IoU) metric is employed 
to ascertain if a predicted bounding box (BB) is 
classified as true positive (TP), false positive (FP), or 
false negative (FN). The TN (true negative) is not 
assessed as it is presumed that each image contains 
an object. Historically, the IoU (Intersection over 
Union) value has been conventionally established at 
0.5. During the execution of the object detection 
model on an image, a bounding box is considered a 
true positive (TP) if the Intersection over Union (IoU) 
is more than 0.5. It is considered a false positive (FP) 
if either the IoU is less than 0.5 or if the bounding box 
is duplicated. Finally, it is considered a false negative 
(FN) if the item is not detected at all. If the object 
detection model fails to detect the target, either due 
to no detection or if the predicted bounding box (BB) 

has an Intersection over Union (IoU) greater than 0.5 
but is classified incorrectly, then the predicted BB 
would be considered a false negative (FN). The 
precision and recall metrics were computed for a 
specific class over the test dataset. Each bounding box 
(BB) would possess a confidence level, often 
determined by its SoftMax  layer, and would be 
utilized to prioritize the output.  

Interpolated Precision 

Before plotting the PR curve, it is necessary to 
determine the interpolated precision. The 
interpolated precision, 𝑃𝑃𝑖𝑖𝑝𝑝𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝, is determined for each 
recall level, 𝑒𝑒, by selecting the highest precision value 
obtained for that 𝑒𝑒. The formula is provided in the 
following manner: 

𝑃𝑃𝑖𝑖𝑝𝑝𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝(�̃�𝑒) = 𝑆𝑆𝐴𝐴𝑚𝑚
𝑟𝑟 > �̃�𝑟

 𝑝𝑝(𝑒𝑒)   (11) 

where 𝑝𝑝(�̃�𝑒) is the measured precision at recall �̃�𝑒. 

Their objective in interpolating the PR curve was to 
mitigate the influence of minor fluctuations in the 
ranking of detections, hence enabling the plotting of 
the PR curve. The precision, recall, and interpolated 
precision for each example are calculated using the 
formulas stated above. The AP is determined by 
computing the integral of the precision-recall curve. 
The recalls are evenly divided into 11 segments, 
ranging from 0 to 1 with increments of 0.1. We get 
the following: 

1
11

∑𝑃𝑃𝑖𝑖𝑝𝑝𝑠𝑠𝑟𝑟𝑟𝑟𝑝𝑝(𝑒𝑒)
𝑟𝑟∈{0,0.1,0.2,0..,0.9,1}

   (12) 

Recall, also referred to as the true-positive rate or 
sensitivity, is the proportion of properly predicted 
positive observations to the total number of 
observations in each class: 

𝑒𝑒𝑒𝑒𝑝𝑝𝐴𝐴𝑟𝑟𝑟𝑟 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

  (7) 

COCO Metrics 

The COCO dataset is commonly employed for training 
and validating object detection models. The dataset 
encompasses a diverse array of 80 object categories, 
which aids in the model's ability to generalize. 
Transfer learning involves utilizing pretrained models 
trained on the COCO dataset to perform object 
detection tasks on new training data. COCO 
introduced six novel techniques for computing 
average recall (AR) and mean average precision (mAP) 
at various Intersection over Union (IoU) thresholds 
and object dimensions. The metrics include mean 
average precision (mAP) at an Intersection over Union 
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(IoU) threshold of 0.5, where the IoU of bounding 
boxes needs to be above 0.50. Another metric is mAP 
at an IoU threshold of 0.75, where the IoU of 
bounding boxes needs to be above 0.75. Additionally, 
there is mAP at various IoU thresholds ranging from 
0.50 to 0.95 with an increment of 0.05. Furthermore, 
there is mAP specifically for small objects with an area 
below 322 pixels, mAP for medium objects with an 
area between 322 and 962 pixels, and mAP for large 
objects with an area above 962 pixels. The primary 
metric, mean average precision (mAP), is determined 
by computing the average precision (AP) from an 
initial Intersection over Union (IoU) of 0.5 to a final 
IoU of 0.95, with increments of 0.05. Subsequently, 
the results are computed by taking the average. 

Additional metrics include the assessment of 
augmented reality (AR) performance at various object 
sizes and the detection of multiple instances. The 
metrics include the aspect ratio (AR) for small items 
with an area less than 322 px, AR for medium objects 
with an area between 322 and 962 px, AR for large 
objects with an area greater than 962 px, AR with a 
number of detections below 100, AR with a number 
of detections below 10, and AR with only one 
detection. This would enable improved distinction 
between models, as certain datasets may contain a 
higher proportion of smaller items compared to 
others. Calculations for precision and recall can be 
performed in this scenario. The AP and AR curves can 
be obtained by performing several computations and 
trials for each class. The AP value corresponds to the 
area under the curve. The mean average precision 
(mAP) for object detection is computed by taking the 
average of the average precision (AP) values derived 
for each individual class, as demonstrated in the 
formula below: 

𝑆𝑆𝐴𝐴𝑃𝑃 = 1
|𝑄𝑄𝑟𝑟|

 ∑ 𝐴𝐴𝑃𝑃(𝑞𝑞),𝑞𝑞∈𝑄𝑄𝑅𝑅   (13) 

where 𝑄𝑄 is the number of queries. 

Computer Configuration 

Collaboratory, often known as Colab, is an artificial 
intelligence platform that operates within a web 
browser. It enables users to create and run Python 
code notebooks. It will allow us to execute our code 
on a GPU without any cost.  

Statistical Analysis 

The results of isolation were repeated three times, 
results are mean ± standard deviation. The statistical 
analysis was done by SPSS 25. 

RESULTS 
Isolation of Fungal Strains 
In this study, the five fungal species Aspergillus 
terreus, Aspergillus fumigatus, Aspergillus flavus, 
Aspergillus welwitschiae, and Aspergillus austwickii 
were isolated and purified as shown in Figure 3. The 
identification of the isolates was further confirmed 
using nuclear ribosomal DNA internal transcribed 
spacer (ITS) for sequencing the PCR products. The 
obtained nucleotide sequence was deposited at the 
NCBI GenBank, and a strain identifier was given to 
each isolate. Thus, they were identified as Aspergillus 
terreus, Aspergillus fumigatus, Aspergillus flavus, 
Aspergillus welwitschiae, and Aspergillus austwickii 
with accession numbers OQ553958.1, OQ798895.1, 
OQ798898.1, OQ798899.1, and OQ798926.1, 
respectively. The dendrogram was established (Figure 
13) to show sequence alignments with available 
sequences from the NCBI data bank. 

Aspergillus flavus GenBank: OQ553958.1 Aspergillus 
flavus isolate AS1 internal transcribed spacer 1, 
partial sequence; 5.8S ribosomal RNA gene, complete 
sequence; and internal transcribed spacer 2, partial 
sequence. 

Aspergillus austwickii GenBank: OQ798895.1 
Aspergillus austwickii isolate AS2 internal transcribed 
spacer 1, partial sequence; 5.8S ribosomal RNA gene, 
complete sequence; and internal transcribed spacer 
2, partial sequence. 

Aspergillus fumigatus GenBank: OQ798898.1 
Aspergillus fumigatus isolates AS3 internal 
transcribed spacer 1, partial sequence; 5.8S 
ribosomal RNA gene, complete sequence; and 
internal transcribed spacer 2, partial sequence. 

Aspergillus terreus GenBank: OQ798899.1 
Aspergillus terreus isolate AS4 internal transcribed 
spacer 1, partial sequence; 5.8S ribosomal RNA gene, 
complete sequence; and internal transcribed spacer 
2, partial sequence 

Aspergillus welwitschiae GenBank: OQ798926.1 
Aspergillus welwitschiae isolate AS5 internal 
transcribed spacer 1, partial sequence; 5.8S 
ribosomal RNA gene, complete sequence; and 
internal transcribed spacer 2, partial sequence 

Model Training 

Figure 4  and Figure 5 show the mAP@0.5-0.95 and 
mAP@0.5, respectively. Figure 6 shows the loss, after 
10 epochs, the average loss dropped below 2.0, and  

 

https://www.ncbi.nlm.nih.gov/nuccore/OQ553958
https://www.ncbi.nlm.nih.gov/nuccore/OQ798895
https://www.ncbi.nlm.nih.gov/nuccore/OQ798898
https://www.ncbi.nlm.nih.gov/nuccore/OQ798899
https://www.ncbi.nlm.nih.gov/nuccore/OQ798926
https://www.ncbi.nlm.nih.gov/nuccore/OQ553958
https://www.ncbi.nlm.nih.gov/nuccore/OQ798895
https://www.ncbi.nlm.nih.gov/nuccore/OQ798898
https://www.ncbi.nlm.nih.gov/nuccore/OQ798899
https://www.ncbi.nlm.nih.gov/nuccore/OQ798926
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Figure 3.  Fungi count (CFU/mL) isolated from soil. 

 
Figure 4. mAP50-95 for the model with batches 

 

 
Figure 5. mAP50 for the model with batches. 

 
mAP@0.5-0.95 and mAP@0.5 stabilized quickly, 
eventually reaching almost 0.6 and 0.9, respectively. 

Predictions 

The predictions measures illustrated through (Figure 
7 - Figure 12) demonstrate the accuracy of our Faster 
R-CNN model in handling various levels of crowd, 
backdrops, combinations, and multiple types, as 
depicted in (Figure 14, Figure 15, and Figure 16). 

Nevertheless, it has difficulties in accurately 
identifying Aspergillus flavus when there are 
numerous predictions in an image or when they are 
positioned as depicted in Figure 14. The predictions 
made by YOLOv8 regarding all varieties of fungi, even 
the different types, were incredibly accurate. 

DISCUSSION 

The identification of unknown Aspergillus clinical 
isolates to the species level is crucial, as different 
species exhibit varying susceptibilities to numerous 
antifungal agents(Yang et al., 2024). One of the oldest 
and most widely used methods in the identification of 
various Aspergillus species is based on their 
morphological characteristics, such as the color of 
their colonies and the appearance of their reverse 
side (Ouf et al., 2019). The morphological 
characteristics of certain Aspergillus species are 
similar, which makes it challenging to differentiate 
between them (Ali et al., 2015). Additionally, it is a 
time-consuming procedure that may not be entirely 
accurate (Suleiman, 2023). The process of genomes 
sequencing would be time intensive while also 
expensive (Rezapour et al., 2023). This work involved 
the training and testing of a model specifically 
designed for the identification of Aspergillus. Their 
performances were evaluated by recognizing 5 
distinct kinds of Aspergillus, some of which exhibit 
close resemblances in terms of forms and colors 
against diverse backdrops in several photographs. 
Small object detection has consistently been a focal 
point of research in the field of object detection.  

The fungal detection using macroscopic detection in 
the past was difficult since it looks similar even if it 
belongs to different Aspergillus fungi species, we 
genetically identified the fungal DNA results, and the 
results were submitted to GenBank. This study 
employed object detection models to precisely 
recognize and locate Aspergillus. The training stage of 
YOLOv8 included mosaic data augmentation, which 
combined four photos into a single image. Utilizing 
mosaic data augmentation has demonstrated its 
efficacy in enhancing the recognition of different 
species of Aspergillus in our dataset, as well as 
detecting  closely  Aspergillus  resembling forms with 
similar coloration. Deep learning was used in several 
research projects to identify and detect fungi. Recent 
works have used deep learning approaches to detect 
illness and classify and observe several Aspergillus 
species. The diagnosis of invasive aspergillosis 
infection is complex and necessitates a practical, 
effective, and economical approach. 
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Figure 6. Loss functions for the YOLOv8 model. 

 
The study explores the capacity of infrared 
spectroscopy, in conjunction with machine learning, 
to meet this therapeutic requirement. Two sets of 
infrared spectrum data were utilized in this study. The 
first set consisted of nine plasma samples spiked with 
Aspergillus and seven Aspergillus-free plasma 
samples. The second set was constructed by 
oversampling these sixteen samples, resulting in 200 
spectral data points. Two models were trained using 
Partial Least Squares-Discriminant Analysis (PLS-DA). 
In addition, two other models were trained using the 
same data. However, prior to performing PLS-DA, 
autoscaling was performed. Forty-five fictitious 
samples that mimicked the complex samples of 
patients at risk of invasive aspergillosis were used to 
evaluate these models. These samples included the 
presence of medications (9 tested) and other 
common infections (5 tested) as potential 
confounders. The accuracy of the simple model's 
predictions is 84.4%, but it may be increased to 93.3% 
by applying autoscaling and oversampling.  

 
Figure 7. Precision-confidence curve. 

 

 
Figure 8. Recall-confidence curve. 

 

 
Figure 9.Precision-recall curve. 

 

 
Figure 10. F1-confidence curve. 
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Figure 11. Recall(B). 

 

 
Figure 12. Precision(B). 

 
The study's findings indicate that Aspergillus species 
can be identified in blood plasma by infrared 
spectroscopy, even, when possible, confounders 
frequently seen in the blood of patients at risk of 
invasive aspergillosis are present (Elkadi et al., 2021). 

This study describes a method for classifying 
Aspergillus fungus species under the microscope. The 
authors of a different research paper explained how 
to identify fungi from macroscopic photos (Campbell 
and Johnson, 2013). On the other hand, certain 
Aspergillus fungi appear identical in macroscopic 
pictures despite belonging to different species. This 
paper describes a procedure for the microscopic 
identification and categorization of a species of 
Aspergillus fungal species belonging to the 9 types 
(Khalil et al., 2016). Four thousand five hundred forty-
five microscopic photos are used to train and evaluate 
a machine learning model. In training, the CNN model 
v1 had an accuracy of 87.50%, and in validation, it had 
an accuracy of 95.65%. To enhance training 
performance, the model is recalculated. The CNN 
model v1.1 dropped the dropout rate from 0.5 to 0.2 
and substituted SoftMax  activation for sigmoid 
activation. 94.20% accuracy in training and 94.31% 
accuracy in validation were attained by the 
recalibrated model (Billones et al., 2020). 

Since Aspergillus species are widely dispersed in 
nature and some can cause invasive aspergillosis (IA) 
infections in immunocompromised individuals as well 
as contamination in agricultural products, automated 
and economical methods are required for the most 
labor-intensive and operator-dependent processes, 
such as microscopic observation and molecular 
detection of Aspergillus species. To tackle this 
difficulty, the capacity to categorize different 
Aspergillus species was investigated using a deep 
convolutional neural network (CNN). A 35× objective 
was used to scan colonies on plates using a dissecting 
microscopy (DM)/stereomicroscopy platform, 
producing pictures with enough resolution for 
categorization. The typical representative shape of 
conidiophores or colonies of each strain was captured 
in 17,142 picture crops that were created as training 
and test datasets using 8,995 original colony 
photographs from seven Aspergillus species grown in 
enrichment media. Positively, the training picture 
collection showed that the Xception model had a 
99.8% classification accuracy. 

On the test picture set, our CNN model's classification 
accuracy after training was 99.7%. This classification 
system was also employed to identify and validate a 
fresh collection of raw photos of these strains, 
demonstrating a detection accuracy of 98.2% based 
on the Xception performance during training and 
testing. As a result, our research presented a fresh 
idea for an affordable, artificial intelligence-based 
approach to Aspergillus organism detection that may 
help increase public awareness of the fungus 
kingdom (Ma et al., 2021). 

This study uses transfer learning with convolutional 
neural networks (CNNs) to handle the problem of 
reliably recognizing filamentous fungi in the medical 
laboratory. The analysis classifies fungal taxa and 
identifies Aspergillus species using microscopic 
pictures from touch-tape slides stained with 
lactophenol cotton blue, the most widely used 
technique in clinical settings. Four thousand one 
hundred eight photos with typical microscopic 
morphology for each genus were included in the 
training and test datasets, and to improve 
classification accuracy, a soft attention mechanism 
was included. Thus, the study's total classification 
accuracy was 94.9% for four commonly seen genera 
and 84.5% for species of Aspergillus. One of its unique 
aspects is that medical technicians were involved in 
developing a model that easily fits into regular 
processes.  
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Figure 13: Phylogenetic trees describing sequence alignment with available sequences from the NCBI data bank of a)  Phylogenetic tree of 
Aspergillus flavus, b) Phylogenetic tree of Aspergillus austwickii. C) phylogenetic tree of Aspergillus fumigatus, d) Phylogenetic tree of Aspergillus 
terreus and e) Phylogenetic tree of Aspergillus welwitschiae. 
 
Furthermore, the study emphasizes how precise and 
effective filamentous fungal diagnosis may be 
achieved by combining cutting-edge technology with 
established medical laboratory procedures (Huang et 
al., 2023). 

One of the well-known saprophytic fungi that can 
survive in a variety of conditions is Aspergillus. 
Although some can be useful in the food sector, 
others can infect humans and animals, usually 
targeting individuals with weakened immune 
systems. To maintain treatment continuity with more 
precise analysis, Aspergillus identification is crucial. 
Aspergillus can only be identified by its 
characteristics; now, two approaches are employed 

to examine these characteristics: microscopic and 
macroscopic analyses. 

Before delivering the final outcomes, a few 
verifications must be made by skilled microscopists. 
Consequently, an automation-based identification is 
suggested to avoid misidentification. This study 
compares and tests various supervised classifiers to 
see how well they can identify 162 distinct Aspergillus 
pictures. Principal component analysis (PCA) was 
used to extract the features, and several classifiers 
were used, including Improved Fuzzy-Based k Nearest 
Centroid Neighbor (IFkNCN), Sparse Representation 
Classifier (SRC), Support Vector Machine (SVM), and 
Kernal Sparse Representation Classifier (KSRC).  

a) b) c) 

d) e) 



Aspergillus detection based on deep learning model using YOLOv8 with a small custom dataset 
 

 

 

Egypt. J. Bot. Vol. 65, No.2 (2025)  223 

 

 

 

Figure 14. YOLOv8 predictions with Aspergillus flavus. 
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Figure 15. YOLOv8 predictions with Aspergillus austwickii. 
 

 

 
Figure 16: YOLOv8 predictions with Aspergillus welwitschiae. 
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Aspergillus flavus achieved 80% accuracy across all 
classifiers based on its accuracy (Radzuan et al., 
2022). 

CONCLUSION 

The Aspergillus dataset was gathered for this study, 
and a deep learning model was created using transfer 
learning techniques. The YOLOv8 model achieves 
satisfactory accuracy and runtime performance while 
requiring a lower computational load. The approach 
can be utilized for the detection of Aspergillus in 
diverse intricate contexts, encompassing different 
sizes and multiangle settings. The YOLOv8 model, 
with an error rate of less than 2% and a running time 
of less than 2 seconds, is a highly effective technique 
for detecting Aspergillus. Subsequent efforts will 
improve the construction of more extensive datasets 
and the evaluation methods to enhance the model's 
optimization and enhance the accuracy and efficiency 
of detection. Furthermore, the existing research can 
be expanded to encompass the identification of 
different types of Aspergilli, the real-time detection 
and quantification of Aspergillus, and the automation 
of various microbiology detection procedures. 
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